Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2024-12-27T04:14:07.901Z Has data issue: false hasContentIssue false

Marangoni waves in two-layer films under the action of spatial temperature modulation

Published online by Cambridge University Press:  20 September 2016

Alexander A. Nepomnyashchy
Affiliation:
Department of Mathematics, Technion – Israel Institute of Technology, 32000, Haifa, Israel Minerva Center for Nonlinear Physics of Complex Systems, Technion – Israel Institute of Technology, 32000, Haifa, Israel
Ilya B. Simanovskii*
Affiliation:
Department of Mathematics, Technion – Israel Institute of Technology, 32000, Haifa, Israel
*
Email address for correspondence: [email protected]

Abstract

The nonlinear dynamics of waves generated by the deformational oscillatory Marangoni instability in a two-layer film under the action of a spatial temperature modulation on the solid substrate is considered. A system of long-wave equations governing the deformations of the upper surface and the interface between the liquids is derived. The nonlinear simulations reveal the existence of numerous dynamical regimes, including two-dimensional stationary flows and standing waves, three-dimensional standing waves with different spatial periods, and three-dimensional travelling waves. The general diagram of the flow regimes is constructed.

Type
Papers
Copyright
© 2016 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abarzhi, S. I., Desjardins, O., Nepomnyashchy, A. & Pitsch, H. 2007 Influence of parametric forcing on the nonequilibrium dynamics of wave patterns. Phys. Rev. E 75, 046208.Google Scholar
Aranson, I. S. & Kramer, L. 2002 The world of the complex Ginzburg–Landau equation. Rev. Mod. Phys. 74, 99.Google Scholar
Bandyopadhyay, D., Gulabani, R. & Sharma, A. 2005 Instability and dynamics of thin liquid bilayers. Ind. Engng Chem. Res. 44, 1259.CrossRefGoogle Scholar
Coullet, P., Elphick, C. & Repaux, D. 1987 Nature of spatial chaos. Phys. Rev. Lett. 58, 431.CrossRefGoogle ScholarPubMed
Cross, M. C. & Hohenberg, P. C. 1993 Pattern formation outside of equilibrium. Rev. Mod. Phys. 65, 851.CrossRefGoogle Scholar
Davis, S. H. 1987 Thermocapillary instabilities. Annu. Rev. Fluid Mech. 19, 403.CrossRefGoogle Scholar
Fisher, L. S. & Golovin, A. A. 2005 Nonlinear stability analysis of a two-layer thin liquid film: dewetting and autophobic behavior. J. Colloid Interface Sci. 291, 515.Google Scholar
Freund, G., Pesch, W. & Zimmermann, W. 2011 Rayleigh–Bénard convection in the presence of spatial temperature modulations. J. Fluid Mech. 673, 318.Google Scholar
Géoris, Ph., Hennenberg, M., Lebon, G. & Legros, J. C. 1999 Investigation of thermocapillary convection in a three-liquid-layer system. J. Fluid Mech. 389, 209.Google Scholar
Haim, L., Mau, Y. & Meron, E. 2014 Spatial forcing of pattern-forming systems that lack inversion symmetry. Phys. Rev. E 90, 022904.Google ScholarPubMed
Hammele, M. & Zimmermann, W. 2006 Harmonic versus subharmonic patterns in a spatially forced oscillating chemical reaction. Phys. Rev. E 73, 066211.Google Scholar
Malomed, B. A. 1993 Ramp-induced wave-number selection for traveling waves. Phys. Rev. E 47, R2257.Google ScholarPubMed
Manor, R., Hagberg, A. & Meron, E. 2008 Wave-number locking in spatially force pattern-forming systems. Europhys. Lett. 83, 10005.Google Scholar
Mau, Y., Haim, L., Hagberg, A. & Meron, E. 2013 Competing resonances in spatial forced pattern-forming systems. Phys. Rev. E 88, 032917.Google Scholar
Mikhailov, A. S. & Showalter, K. 2006 Control of waves, patterns and turbulence in chemical systems. Phys. Rep. 425, 79.Google Scholar
Nepomnyashchy, A. A. 1988 Spatially modulated convective motions in a vertical layer with curved boundaries. Z. Angew. Math. Mech. 52, 677.Google Scholar
Nepomnyashchy, A. A. & Abarzhi, S. I. 2010 Monochromatic waves induced by large-scale parametric forcing. Phys. Rev. E 81, 037202.Google ScholarPubMed
Nepomnyashchy, A. A. & Shklyaev, S. 2016 Longwave oscillatory patterns in liquids: outside the world of the complex Ginzburg–Landau equation. J. Phys. A: Math. Gen. 49, 053001.Google Scholar
Nepomnyashchy, A. A. & Simanovskii, I. B. 2006 Decomposition of a two-layer thin liquid film flowing under the action of Marangoni stresses. Phys. Fluids 18, 112101.Google Scholar
Nepomnyashchy, A. A. & Simanovskii, I. B. 2007 Marangoni instability in ultrathin two-layer films. Phys. Fluids 19, 122103.CrossRefGoogle Scholar
Nepomnyashchy, A. A. & Simanovskii, I. B. 2012 Nonlinear Marangoni waves in a two-layer film in the presence of gravity. Phys. Fluids 24, 032101.Google Scholar
Oron, A., Davis, S. H. & Bankoff, S. G. 1997 Long-scale evolution of thin liquid films. Rev. Mod. Phys. 69, 931.Google Scholar
Pismen, L. M. 1987 Bifurcation of quasiperiodic and nonstationary patterns under external forcing. Phys. Rev. Lett. 59, 2740.Google Scholar
Pototsky, A., Bestehorn, M., Merkt, D. & Thiele, U. 2004 Alternative pathways of dewetting for a thin liquid two-layer film. Phys. Rev. E 70, 025201.Google ScholarPubMed
Pototsky, A., Bestehorn, M., Merkt, D. & Thiele, U. 2005 Morphology changes in the evolution of liquid two-layer films. J. Chem. Phys. 122, 224711.Google Scholar
Schöll, E. & Schuster, H. G.(Eds) 2008 Handbook of Chaos Control, 2nd edn. Wiley-VCH, Weinheim.Google Scholar
Simanovskii, I. B. & Nepomnyashchy, A. A. 1993 Convective Instabilities in Systems with Interface. Gordon and Breach.Google Scholar
Utzny, C., Zimmermann, W. & Bär, M. 2002 Resonant spatio-temporal forcing of oscillatory media. Europhys. Lett. 57, 113.CrossRefGoogle Scholar
Vozovoi, L. P. & Nepomnyashchy, A. A. 1974 Convection in the horizontal layer with the spatial modulation of the temperature on the boundaries. In Hydrodynamics, pt.7 (ed. Zhukhovitskii, E. M.), p. 107. Perm State Pedagogical Institute, (in Russian).Google Scholar
Vozovoi, L. P. & Nepomnyashchy, A. A. 1979 On the stability of spatially periodic convective flows in the vertical layer with curved boundaries. Z. Angew. Math. Mech. 43, 1080.Google Scholar
Weiss, S., Seiden, G. & Bodenschatz, E. 2014 Resonance patterns in spatially forced Rayleigh–Bénard convection. J. Fluid Mech. 756, 293.Google Scholar