Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-27T03:47:43.221Z Has data issue: false hasContentIssue false

Macro-size drop encapsulation

Published online by Cambridge University Press:  25 March 2015

A. Maleki
Affiliation:
Department of Mechanical Engineering, University of British Columbia, 2054-6250 Applied Science Lane, Vancouver, BC, V6T 1Z4, Canada
S. Hormozi
Affiliation:
Department of Mechanical Engineering, Russ College of Engineering and Technology, Ohio University, 251 Stocker Center, Athens, OH 45701-2979, USA
A. Roustaei
Affiliation:
Department of Mechanical Engineering, University of British Columbia, 2054-6250 Applied Science Lane, Vancouver, BC, V6T 1Z4, Canada
I. A. Frigaard*
Affiliation:
Department of Mechanical Engineering, University of British Columbia, 2054-6250 Applied Science Lane, Vancouver, BC, V6T 1Z4, Canada Department of Mathematics, University of British Columbia, 1984 Mathematics Road, Vancouver, BC, V6T 1Z2, Canada
*
Email address for correspondence: [email protected]

Abstract

Viscoplastic fluids do not flow unless they are sufficiently stressed. This property can be exploited in order to produce novel flow features. One example of such flows is viscoplastically lubricated (VPL) flow, in which a viscoplastic fluid is used to stabilize the interface in a multi-layer flow, far beyond what might be expected for a typical viscous–viscous interface. Here we extend this idea by considering the encapsulation of droplets within a viscoplastic fluid, for the purpose of transportation, e.g. in pipelines. The main advantage of this method, compared to others that involve capillary forces is that significantly larger droplets may be stably encapsulated, governed by the length scale of the flow and yield stress of the encapsulating fluid. We explore this set-up both analytically and computationally. We show that sufficiently small droplets are held in the unyielded plug of a Poiseuille flow (pipe or plane channel). As the length or radius of the droplets increases, the carrier fluid eventually yields, potentially breaking the encapsulation. We study this process of breaking and give estimates for the limiting size of droplets that can be encapsulated.

Type
Papers
Copyright
© 2015 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Balmforth, N. J. & Craster, R. 1999 A consistent thin-layer theory for Bingham plastics. J. Non-Newtonian Fluid Mech. 84, 6581.Google Scholar
Balmforth, N. J., Frigaard, I. A. & Overlaz, G. 2014 Yielding to stress: recent developments in viscoplastic fluid mechanics. Annu. Rev. Fluid Mech. 46, 121146.Google Scholar
Barnes, H. A. 1999 The yield stress – a review or ‘ ${\it\pi}{\it\alpha}{\it\nu}{\it\tau}{\it\alpha}{\it\rho}{\it\epsilon}{\it\iota}$ ’ – everything flows? J. Non-Newtonian Fluid Mech. 81, 133178.CrossRefGoogle Scholar
Beaulne, M. & Mitsoulis, E. 1997 Creeping motion of a sphere in tubes filled with Herschel–Bulkley fluids. J. Non-Newtonian Fluid Mech. 72, 5571.Google Scholar
Bercovier, M. & Engleman, M. 1980 A finite-element method for incompressible non-Newtonian flows. J. Comput. Phys. 36, 313326.Google Scholar
Beris, A. N., Tsamopoulos, J. A. & Armstrong, R. C. 1985 Creeping motion of a sphere through a Bingham plastic. J. Fluid Mech. 158, 219244.Google Scholar
Blackery, J. & Mitsoulis, E. 1997 Creeping motion of a sphere in tubes filled with a Bingham plastic material. J. Non-Newtonian Fluid Mech. 70, 5977.CrossRefGoogle Scholar
Boujlel, J. & Coussot, P. 2013 Measuring the surface tension of yield stress fluids. Soft Matt. 9, 58985908.Google Scholar
Chateau, X., Ovarlez, G. & Trung, K. L. 2008 Homogenization approach to the behavior of suspensions of non-colloidal particles in yield stress fluids. J. Rheol. 52, 489506.Google Scholar
Cohen, I., Li, H., Hougland, J. L., Mrksich, M. & Nagel, S. R. 2001 Using selective withdrawal to coat microparticles. Science 292, 265267.Google Scholar
Coussot, P. 2005 Rheology of Pastes, Suspensions and Granular Materials. Wiley.Google Scholar
Coussot, P. 2014 Yield stress fluid flows: a review of experimental data. J. Non-Newtonian Fluid Mech. 211, 3149.Google Scholar
Coussot, P., Tocquer, L., Lanos, C. & Ovarlez, G. 2009 Macroscopic vs. local rheology of yield stress fluids. J. Non-Newtonian Fluid Mech. 158, 8590.Google Scholar
De Besses, B. D., Magnin, A. & Jay, P. 2003 Viscoplastic flow around a cylinder in an infinite medium. J. Non-Newtonian Fluid Mech. 115, 2749.Google Scholar
Dimakopoulos, Y., Pavlidis, M. & Tsamopoulos, J. 2013 Steady bubble rise in Herschel–Bulkley fluids and comparison of predictions via the augmented Lagrangian method with those via the Papanastasiou model. J. Non-Newtonian Fluid Mech. 200, 3451.CrossRefGoogle Scholar
Dubash, N. & Frigaard, I. A. 2004 Conditions for static bubbles in viscoplastic fluids. Phys. Fluids 16, 43194330.CrossRefGoogle Scholar
Dubash, N. & Frigaard, I. A. 2005 Propagation and stopping of air bubbles in Carbopol solutions. J. Non-Newtonian Fluid Mech. 142, 123134.Google Scholar
Fortin, M. & Glowinski, R. 1983 Augmented Lagrangian Methods: Application to the Numerical Solution of Boundary-Value Problems. Elsevier.Google Scholar
Frigaard, I. A. 2001 Super-stable parallel flows of multiple visco-plastic fluids. J. Non-Newtonian Fluid Mech. 100, 4976.CrossRefGoogle Scholar
Frigaard, I. A. & Nouar, C. 2005 On the usage of viscosity regularisation methods for visco-plastic fluid flow computation. J. Non-Newtonian Fluid Mech. 127, 126.CrossRefGoogle Scholar
Frigaard, I. A. & Ryan, D. P. 2004 Flow of a visco-plastic fluid in a channel of slowly varying width. J. Non-Newtonian Fluid Mech. 123, 6783.Google Scholar
Ganan-Calvo, A. M. 1998 Generation of steady liquid microthreads and micron-sized monodisperse sprays in gas streams. Phys. Rev. Lett. 80, 285288.CrossRefGoogle Scholar
Glowinski, R. 1984 Numerical Methods for Nonlinear Variational Problems. Springer.Google Scholar
Glowinski, R. & Wachs, A.2011 Handbook of Numerical Analysis: on the Numerical Simulation of Viscoplastic Fluid Flow.Google Scholar
Gref, R., Minamitake, Y., Peracchia, M. T., Trubetskoy, V., Torchilin, V. & Langer, R. 1994 Biodegradable long-circulating polymeric nanospheres. Science 263, 16001603.Google Scholar
Hillery, A. M., Lloyd, A. W. & Swarbrick, J. 2001 Drug Delivery and Targeting for Pharmacists and Pharmaceutical Scientists. Taylor & Francis.Google Scholar
Holenberg, Y., Lavrenteva, O. M., Liberzon, A., Shavit, U. & Nir, A. 2013 PTV and PIV study of the motion of viscous drops in yield stress material. J. Non-Newtonian Fluid Mech. 193, 129143.Google Scholar
Hormozi, S., Dunbrack, G. & Frigaard, I. A. 2014 Visco-plastic sculpting. Phys. Fluids 26, 093101.CrossRefGoogle Scholar
Hormozi, S. & Frigaard, I. A. 2012 Nonlinear stability of a visco-plastically lubricated viscoelastic fluid flow. J. Non-Newtonian Fluid Mech. 169, 6173.Google Scholar
Hormozi, S., Martinez, D. M. & Frigaard, I. A. 2011a Stable core-annular flows of viscoelastic fluids using the visco-plastic lubrication technique. J. Non-Newtonian Fluid Mech. 166, 13561368.Google Scholar
Hormozi, S., Wielage-Burchard, K. & Frigaard, I. A. 2011b Multi-layer channel flows with yield stress fluids. J. Non-Newtonian Fluid Mech. 166, 262278.Google Scholar
Hormozi, S., Wielage-Burchard, K. & Frigaard, I. A. 2011c Entry, start up and stability effects in visco-plastically lubricated pipe flows. J. Fluid Mech. 673, 432467.Google Scholar
Huen, C. K., Frigaard, I. A. & Martinez, D. M. 2007 Experimental studies of multi-layer flows using a visco-plastic lubricant. J. Non-Newtonian Fluid Mech. 142, 150161.CrossRefGoogle Scholar
Jaworek, A. 2008 Electrostatic micro and nanoencapsulation and electroemulsification: a brief review. J. Microencapsul. 25, 443468.CrossRefGoogle ScholarPubMed
Lavrenteva, O. M., Holenberg, Y. & Nir, A. 2009 Motion of viscous drops in tubes filled with yield stress fluid. Chem. Engng Sci. 64, 47724786.Google Scholar
Lipscomb, G. G. & Denn, M. 1984 Flow of Bingham fluids in complex geometries. J. Non-Newtonian Fluid Mech. 14, 337346.Google Scholar
Lister, J. R. 1989 Selective withdrawal from a viscous 2-layer system. J. Fluid Mech. 198, 231254.CrossRefGoogle Scholar
Liu, B. T., Muller, S. J. & Denn, M. M. 2002 Convergence of a regularization method for creeping flow of a Bingham material about a rigid sphere. J. Non-Newtonian Fluid Mech. 102, 179191.CrossRefGoogle Scholar
Liu, B. T., Muller, S. J. & Denn, M. M. 2003 Interactions of two rigid spheres translating collinearly in creeping flow in a Bingham material. J. Non-Newtonian Fluid Mech. 113, 4967.Google Scholar
Loscertales, I. G., Barrero, A., Guerrero, I., Cortijo, R., Marquez, M. & Ganan-Calvo, A. M. 2002 Micro/nano encapsutation via electrified coaxial liquid jets. Science 295, 16951698.CrossRefGoogle ScholarPubMed
Mahaut, F., Chateau, X., Coussot, P. & Ovarlez, G. 2008 Yield stress and elastic modulus of suspensions of non-colloidal particles in yield stress fluids. J. Rheol. 52, 287313.CrossRefGoogle Scholar
Merkak, O., Jossic, L. & Magnin, A. 2008 Dynamics of particles suspended in a yield stress fluid flowing in a pipe. AIChE J. 54, 11291138.Google Scholar
Merkak, O., Jossic, L. & Magnin, A. 2009 Migration and sedimentation of spherical particles in a yield stress fluid flowing in a horizontal cylindrical pipe. AIChE J. 55, 25152525.Google Scholar
Mitsoulis, E. 2004 On creeping drag flow of a viscoplastic fluid past a circular cylinder: wall effects. Chem. Engng Sci. 59, 789800.CrossRefGoogle Scholar
Moller, P. C. F., Fall, A. & Bonn, D. 2009 Origin of apparent viscosity in yield stress fluids below yielding. Europhys. Lett. 87, 38004.Google Scholar
Moyers-Gonzalez, M. A., Frigaard, I. A. & Nouar, C. 2004 Nonlinear stability of a visco-plastically lubricated viscous shear flow. J. Fluid Mech. 506, 117146.Google Scholar
Moyers-Gonzalez, M. A., Frigaard, I. A. & Nouar, C. 2010 Stable two-layer flows at all $\mathit{Re}$ ; visco-plastic lubrication of shear-thinning and viscoelastic fluids. J. Non-Newtonian Fluid Mech. 165, 15781587.Google Scholar
Ovarlez, G., Bertrand, F., Coussot, P. & Chateau, X. 2012 Shear-induced sedimentation in yield stress fluids. J. Non-Newtonian Fluid Mech. 177, 1928.Google Scholar
Ovarlez, G., Bertrand, F. & Rodts, S. 2006 Local determination of the constitutive law of a dense suspension of non-colloidal particles through magnetic resonance imaging. J. Rheol. 50, 259292.Google Scholar
Papanastasiou, T. C. 1987 Flows of materials with yield. J. Rheol. 31, 385404.Google Scholar
Potapov, A., Spivak, R., Lavrenteva, O. M. & Nir, A. 2006 Motion and deformation of drops in Bingham fluid. Ind. Engng Chem. Res. 45, 69856995.CrossRefGoogle Scholar
Putz, A., Burghelea, T. I., Frigaard, I. A. & Martinez, D. M. 2008 Settling of an isolated spherical particle in a yield stress shear thinning fluid. Phys. Fluids 20, 033102.Google Scholar
Putz, A. & Frigaard, I. A. 2010 Creeping flow around particles in a Bingham fluid. J. Non-Newtonian Fluid Mech. 165, 263280.Google Scholar
Putz, A., Frigaard, I. A. & Martinez, D. M. 2009 On the lubrication paradox and the use of regularisation methods for lubrication flows. J. Non-Newtonian Fluid Mech. 163, 6277.CrossRefGoogle Scholar
Roquet, N. & Saramito, P. 2003 An adaptive finite element method for Bingham fluid flows around a cylinder. Comput. Meth. Appl. Mech. Engng 192, 33173341.Google Scholar
Roquet, N. & Saramito, P. 2008 An adaptive finite element method for viscoplastic flows in a square pipe with stick-slip at the wall. J. Non-Newtonian Fluid Mech. 155, 101115.Google Scholar
Roustaei, A. & Frigaard, I. A. 2013 The occurrence of fouling layers in the flow of a yield stress fluid along a wavy-walled channel. J. Non-Newtonian Fluid Mech. 198, 109124.Google Scholar
Roustaei, A., Gosselin, A. & Frigaard, I. A. 2014 Residual drilling mud during conditioning of uneven boreholes in primary cementing: rhelogy and geometry effects. J. Non-Newtonian Fluid Mech. doi:10.1016/j.jnnfm.2014.09.019.Google Scholar
Singh, J. P. & Denn, M. M. 2008 Interacting two-dimensional bubbles and droplets in a yield-stress fluid. Phys. Fluids 20, 040901.Google Scholar
Tokpavi, D. L., Magnin, A. & Jay, P. 2008 Very slow flow of Bingham viscoplastic fluid around a circular cylinder. J. Non-Newtonian Fluid Mech. 154, 6576.Google Scholar
Tsamopoulos, J., Dimakopoulos, Y., Chatzidai, N., Karapetsas, G. & Pavlidis, M. 2008 Steady bubble rise and deformation in Newtonian and viscoplastic fluids and conditions for bubble entrapment. J. Fluid Mech. 601, 123164.Google Scholar
Vu, T., Ovarlez, G. & Chateau, X. 2010 Macroscopic behavior of bidisperse suspensions of non-colloidal particles in yield stress fluids. J. Rheol. 54, 815833.Google Scholar
Walton, I. C. & Bittleston, S. H. 1998 The axial-flow of a Bingham plastic in a narrow eccentric annulus. J. Non-Newtonian Fluid Mech. 222, 3960.Google Scholar
Windbergs, M., Zhao, Y., Heyman, J. & Weitz, D. A. 2013 Biodegradable core–shell carriers for simultaneous encapsulation of synergistic actives. J. Am. Chem. Soc. 135, 79337937.Google Scholar
Zhao, Y., Shum, H. C., Adams, L. A., Sun, B., Holtze, C., Gu, Z. & Weitz, D. A. 2011 Enhanced encapsulation of actives in self-sealing microcapsules by precipitation in capsule shells. Langmuir 27, 1398813991.Google Scholar
Zuidam, N. J. & Nedovic, V. A. 2010 Encapsulation Technologies for Active Food Ingredients and Food Processing. Springer.Google Scholar