Article contents
Linear stability analysis of a premixed flame with transverse shear
Published online by Cambridge University Press: 19 January 2015
Abstract
One-dimensional planar premixed flames propagating in a uniform flow are susceptible to hydrodynamic instabilities known (generically) as Darrieus–Landau instabilities. Here, we extend that hydrodynamic linear stability analysis to include a lateral shear. This generalization is a situation of interest for laminar and turbulent flames when they travel into a region of shear (such as a jet or shear layer). It is shown that the problem can be formulated and solved analytically and a dispersion relation can be determined. The solution depends on a shear parameter in addition to the wavenumber, thermal expansion ratio, and Markstein lengths. The study of the dispersion relation shows that perturbations have two types of behaviour as wavenumber increases. First, for small shear, we recover the Darrieus–Landau results except for a region at small wavenumbers, large wavelengths, that is stable. Initially, increasing shear has a stabilizing effect. But, for sufficiently high shear, the flame becomes unstable again and its most unstable wavelength can be much smaller than the Markstein length of the zero-shear flame. Finally, the stabilizing effect of low shear can make flames with negative Markstein numbers stable within a band of wavenumbers.
JFM classification
- Type
- Papers
- Information
- Copyright
- © 2015 Cambridge University Press
References
- 3
- Cited by