Hostname: page-component-78c5997874-dh8gc Total loading time: 0 Render date: 2024-11-19T06:52:44.388Z Has data issue: false hasContentIssue false

Linear stability analysis of a Newtonian ferrofluid cylinder under a magnetic field

Published online by Cambridge University Press:  31 March 2021

Romain Canu
Affiliation:
Normandie Univ, UNIROUEN, INSA Rouen, CNRS, CORIA, 76000Rouen, France
Marie-Charlotte Renoult*
Affiliation:
Normandie Univ, UNIROUEN, INSA Rouen, CNRS, CORIA, 76000Rouen, France
*
Email address for correspondence: [email protected]

Abstract

We investigate the stability of a Newtonian ferrofluid cylinder under a steady magnetic field. Linear stability analysis is performed by imposing a small-amplitude axisymmetric disturbance to the basic state. Admissible magnetic field shapes are found and dispersion relations are obtained for two general shapes: axial and non-axial. For the latter, a wire is needed to avoid a singularity at the cylinder centre. Solutions are plotted for two particular shapes previously discussed in the literature for an inviscid ferrofluid: axial and azimuthal. The applicability of the developed theory to cylinder and jet experiments using a solenoid and a wire carrying a current to create the axial and azimuthal magnetic fields, respectively, is studied. For both cases, results show that the magnetic field has a stabilising effect, as already evidenced. In addition, by solving the equation for the cutoff wavenumber, we show that, unlike the azimuthal case, the axial case cannot be stable for all wavenumbers. Taking into account the ferrofluid viscosity better explains the experimental results on ferrofluid cylinders in an azimuthal magnetic field. By choosing a specific admissible magnetic fields shape, the range of wavenumbers in which the cylinder is unstable can be controlled. A radial magnetic field is one example studied here without providing any details on the means to create the field. This latter case reveals the potential of magnetic fields to control the drop size during the ferrofluid jet breakup. These results may be of interest for applications in the printing and medical fields.

Type
JFM Papers
Copyright
© The Author(s), 2021. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Abdel Fattah, A.R., Ghosh, S. & Puri, I.K. 2016 Printing microstructures in a polymer matrix using a ferrofluid droplet. J. Magn. Magn. Mater. 401, 10541059.CrossRefGoogle Scholar
Ahmed, A., Qureshi, A.J., Fleck, B.A. & Waghmare, P.R. 2018 Effects of magnetic field on the spreading dynamics of an impinging ferrofluid droplet. J. Colloid Interface Sci. 532, 309320.CrossRefGoogle ScholarPubMed
Alexiou, C., Tietze, R., Schreiber, E., Jurgons, R., Richter, H., Trahms, L., Rahn, H., Odenbach, S. & Lyer, S. 2011 Cancer therapy with drug loaded magnetic nanoparticles – magnetic drug targeting. J. Magn. Magn. Mater. 323 (10), 14041407.CrossRefGoogle Scholar
Arkhipenko, V.I., Barkov, Y..D., Bashtovoi, V.G. & Krakov, M.S. 1981 Investigation into the stability of a stationary cylindrical column of magnetizable liquid. Fluid Dyn. 15 (4), 477481.CrossRefGoogle Scholar
Bashtovoi, V.G. & Krakov, M.S. 1978 Stability of an axisymmetric jet of magnetizable fluid. J. Appl. Mech. Tech. Phys. 19 (4), 541545.CrossRefGoogle Scholar
Blyth, M.G. & Părău, E.I. 2014 Solitary waves on a ferrofluid jet. J. Fluid Mech. 750, 401420.CrossRefGoogle Scholar
Bourdin, E., Bacri, J.-C. & Falcon, E. 2010 Observation of axisymmetric solitary waves on the surface of a ferrofluid. Phys. Rev. Lett. 104 (9), 094502.CrossRefGoogle ScholarPubMed
Brenn, G. 2017 Analytical Solutions for Transport Processes: Fluid Mechanics, Heat and Mass Transfer, 1st edn. Mathematical Engineering. Springer.CrossRefGoogle Scholar
Callaghan, E.E. & Maslen, S.H. 1960 The magnetic field of a finite solenoid. NASA Tech. Note NASA-TN-D-465.Google Scholar
Chandrasekhar, S. 1961 Hydrodynamic and Hydromagnetic Stability. International Series of Monographs on Physics. Clarendon.Google Scholar
Charles, S.W. 1987 Some applications of magnetic fluids – use as an ink and in microwave systems. J. Magn. Magn. Mater. 65 (2), 350358.CrossRefGoogle Scholar
Charles, S.W. & Popplewell, J. 1982 Properties and applications of magnetic liquids. Endeavour 6 (4), 153161.CrossRefGoogle Scholar
Doak, A. & Vanden-Broeck, J.-M. 2019 Travelling wave solutions on an axisymmetric ferrofluid jet. J. Fluid Mech. 865, 414439.CrossRefGoogle Scholar
Fabian, M., Burda, P., Šviková, M. & Huňady, R. 2017 The influence of magnetic field on the separation of droplets from ferrofluid jet. J. Magn. Magn. Mater. 431, 196200.CrossRefGoogle Scholar
Favakeh, A., Bijarchi, M.A. & Shafii, M.B. 2020 Ferrofluid droplet formation from a nozzle using alternating magnetic field with different magnetic coil positions. J. Magn. Magn. Mater. 498, 166134.CrossRefGoogle Scholar
García, F.J. & González, H. 2008 Normal-mode linear analysis and initial conditions of capillary jets. J. Fluid Mech. 602, 81117.CrossRefGoogle Scholar
Guerrero, J., González, H. & García, F.J. 2012 Spatial modes of capillary jets, with application to surface stimulation. J. Fluid Mech. 702, 354377.CrossRefGoogle Scholar
Jackson, J.D. 1962 Classical Electrodynamics. Wiley.Google Scholar
Keller, J.B., Rubinow, S.I. & Tu, Y.O. 1973 Spatial instability of a jet. Phys. Fluids 16 (12), 2052.CrossRefGoogle Scholar
Luck, R., Zdaniuk, G.J. & Cho, H. 2015 An efficient method to find solutions for transcendental equations with several roots. Intl J. Engng Maths 2015, 14.CrossRefGoogle Scholar
Löwa, N., Fabert, J.-M., Gutkelch, D., Paysen, H., Kosch, O. & Wiekhorst, F. 2019 3D-printing of novel magnetic composites based on magnetic nanoparticles and photopolymers. J. Magn. Magn. Mater. 469, 456460.CrossRefGoogle Scholar
Lübbe, A.S., et al. 1996 Clinical experiences with magnetic drug targeting: a phase I study with $4'$-epidoxorubicin in 14 patients with advanced solid tumors. Cancer Res. 56 (20), 46864693.Google ScholarPubMed
Melcher, J.R. 1963 Field-coupled Surface Waves: A Comparative Study of Surface-coupled Electrohydrodynamic and Magnetohydrodynamic Systems. MIT Press.Google Scholar
Nguyen, N.-T. 2012 Micro-magnetofluidics: interactions between magnetism and fluid flow on the microscale. Microfluid Nanofluid 12 (1–4), 116.CrossRefGoogle Scholar
Pankhurst, Q.A., Connolly, J., Jones, S.K. & Dobson, J. 2003 Applications of magnetic nanoparticles in biomedicine. J. Phys. D: Appl. Phys. 36 (13), R167R181.CrossRefGoogle Scholar
Pulfer, S.K., Ciccotto, S.L. & Gallo, J.M. 1999 Distribution of small magnetic particles in brain tumor-bearing rats. J. Neurooncol. 41 (2), 99105.CrossRefGoogle ScholarPubMed
Pérez, J.-P., Carles, R., Fleckinger, R. & Lagoute, C. 2009 Electromagnétisme: fondements et applications : avec 300 exercices et problèmes résolus. OCLC: 1029110105.Google Scholar
Radwan, A.E. 1988 Effect of magnetic fields on the capillary instability of an annular liquid jet. J. Magn. Magn. Mater. 72 (2), 219232.CrossRefGoogle Scholar
Radwan, A.E. 1990 a Capillary instability of a streaming cylindrical liquid jet submerged in a streaming fluid under the influence of magnetic fields. J. Magn. Magn. Mater. 86, 184196.CrossRefGoogle Scholar
Radwan, A.E. 1990 b Effect of magnetic fields on the capillary instability of an annular liquid jet having a solid mantle. J. Magn. Magn. Mater. 84 (1), 189200.CrossRefGoogle Scholar
Raj, K. & Boulton, R.J. 1987 Ferrofluids – properties and applications. Mater. Des. 8 (4), 233236.CrossRefGoogle Scholar
Raj, K., Moskowitz, B. & Casciari, R. 1995 Advances in ferrofluid technology. J. Magn. Magn. Mater. 149 (1), 174180.CrossRefGoogle Scholar
Raj, K. & Moskowitz, R. 1990 Commercial applications of ferrofluids. J. Magn. Magn. Mater. 85 (1), 233245.CrossRefGoogle Scholar
Rannacher, D. & Engel, A. 2006 Cylindrical Korteweg–de Vries solitons on a ferrofluid surface. New J. Phys. 8 (6), 108108.CrossRefGoogle Scholar
Renoult, M.-C., Brenn, G., Plohl, G. & Mutabazi, I. 2018 Weakly nonlinear instability of a Newtonian liquid jet. J. Fluid Mech. 856, 169201.CrossRefGoogle Scholar
Rosensweig, R.E. 1985 Ferrohydrodynamics. Cambridge Monographs on Mechanics and Applied Mathematics. Cambridge University Press.Google Scholar
Scherer, C. & Figueiredo Neto, A.M. 2005 Ferrofluids: properties and applications. Braz. J. Phys. 35 (3a), 718727.CrossRefGoogle Scholar
Shliomis, M.I. 1974 Magnetic fluids. Sov. Phys. Uspekhi 17 (2), 153169.CrossRefGoogle Scholar
Smythe, W.R. 1950 Static and Dynamic Electricity. International Series in Pure and Applied Physics. McGraw-Hill 201, 306309.Google Scholar
Sudo, S., Ikohagi, T., Nishiyama, H. & Katagiri, K. 1999 Dynamic behavior of a magnetic fluid jet injected from a vibrating nozzle. J. Magn. Magn. Mater. 201, 306309.CrossRefGoogle Scholar
Sudo, S. & Ise, K. 2004 Droplet production from a capillary jet of magnetic fluid under a magnetic field. Intl J. Appl. Electrom. 19 (1–4), 169174.Google Scholar
Sudo, S., Wakuda, H. & Asano, D. 2010 Capillary jet production of magnetic fluid by electromagnetic vibration. Intl J. Appl. Electrom. 33 (1–2), 6369.Google Scholar
Taktarov, N.G. 1975 Disintegration of streams of magnetic fluid. Magnetohydrodynamics 11 (2), 156158.Google Scholar
Weinstein, M. 1988 The effect of a vertical magnetic field on the capillary instability of a liquid–liquid jet. J. Franklin Inst. 325 (4), 537543.CrossRefGoogle Scholar
Yakubenko, P.A. & Shugai, G.A. 1996 Absolute, convective, and global instability of a magnetic liquid jet. Fluid Dyn. Res. 18 (6), 325335.CrossRefGoogle Scholar
Yarin, A.L. 1993 Free Liquid Jets and Films: Hydrodynamics and Rheology. Interaction of Mechanics and Mathematics Series. Longman Scientific & Technical.Google Scholar
Zakinyan, A. 2017 Instability of a magnetic fluid jet in a transverse magnetic field. Chem. Engng Commun. 204 (4), 434439.CrossRefGoogle Scholar