Hostname: page-component-78c5997874-dh8gc Total loading time: 0 Render date: 2024-11-20T00:30:46.189Z Has data issue: false hasContentIssue false

Linear feedback control of invariant solutions in channel flow

Published online by Cambridge University Press:  05 August 2020

Moritz Linkmann*
Affiliation:
School of Mathematics and Maxwell Institute for Mathematical Sciences, University of Edinburgh, EdinburghEH9 3FD, UK
Florian Knierim
Affiliation:
Fachbereich Physik, Philipps-University of Marburg, D-35032Marburg, Germany
Stefan Zammert
Affiliation:
Fachbereich Physik, Philipps-University of Marburg, D-35032Marburg, Germany
Bruno Eckhardt
Affiliation:
Fachbereich Physik, Philipps-University of Marburg, D-35032Marburg, Germany
*
Email address for correspondence: [email protected]

Abstract

Considering channel flow at Reynolds numbers below the linear stability threshold of the laminar profile as a generic example system showing a subcritical transition to turbulence connected with the existence of simple invariant solutions, we here discuss issues that arise in the application of linear feedback control of invariant solutions of the Navier–Stokes equations. We focus on the simplest possible problem, that is, travelling waves with one unstable direction. In view of potential experimental applicability we construct a pressure-based feedback strategy and study its effect on the stable, marginal and unstable directions of these solutions in different periodic cells. Even though the original instability can be removed, new instabilities emerge as the feedback procedure affects not only the unstable but also the stable directions. We quantify these adverse effects and discuss their implications for the design of successful control strategies. In order to highlight the challenges that arise in the application of feedback control methods in principle and concerning potential applications in the search for simple invariant solutions of the Navier–Stokes equations in particular, we consider an explicitly constructed analogue to closed-loop linear optimal control that leaves the stable directions unaffected.

Type
JFM Papers
Copyright
© The Author(s), 2020. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Deceased on the 7th of August 2019.

References

REFERENCES

Åkervik, E., Hœpffner, J., Ehrenstein, U. & Henningson, D. S. 2007 Optimal growth, model reduction and control in a separated boundary-layer flow using global modes. J. Fluid Mech. 579, 305314.CrossRefGoogle Scholar
Anderson, B. D. O. & Moore, J. B. 1990 Linear Optimal Control. Prentice Hall.Google Scholar
Antoulas, A., Sorensen, D. & Gugercin, S. 2001 A survey of model reduction methods for large-scale systems. Contemp. Maths 280, 193219.CrossRefGoogle Scholar
Avila, M., Mellibovsky, F., Roland, N. & Hof, B. 2013 Streamwise-localized solutions at the onset of turbulence in pipe flow. Phys. Rev. Lett. 110, 224502.CrossRefGoogle ScholarPubMed
Barbagallo, A., Sipp, D. & Schmid, P. J. 2009 Closed-loop control of an open cavity flow using reduced-order models. J. Fluid Mech. 641, 150.CrossRefGoogle Scholar
Budanur, N. B. & Hof, B. 2018 Complexity of the laminar-turbulent boundary in pipe flow. Phys. Rev. Fluids 3, 054401.CrossRefGoogle Scholar
Budanur, N. B., Short, K. Y., Farazmand, M., Willis, A. P. & Cvitanović, P. 2017 Relative periodic orbits form the backbone of turbulent pipe flow. J. Fluid Mech. 833, 274301.CrossRefGoogle Scholar
Burl, J. B. 1999 Linear Optimal Control. $\mathscr {H}_2$and $\mathscr {H}_\infty$Methods. Addison-Wesley.Google Scholar
Cvitanović, P. 2013 Recurrent flows: the clockwork behind turbulence. J. Fluid Mech. 726, 14.CrossRefGoogle Scholar
Duguet, Y., Pringle, C. C. T. & Kerswell, R. R. 2008 a Relative periodic orbits in transitional pipe flow. Phys. Fluids 20, 114102.CrossRefGoogle Scholar
Duguet, Y., Willis, A. P. & Kerswell, R. R. 2008 b Transition in pipe flow: the saddle structure on the boundary of turbulence. J. Fluid Mech. 613, 255274.CrossRefGoogle Scholar
Eckhardt, B., Schneider, T. M., Hof, B. & Westerweel, J. 2007 Turbulence transition in pipe flow. Annu. Rev. Fluid Mech. 39, 447468.CrossRefGoogle Scholar
Ehrenstein, U. & Gallaire, F. 2008 Optimal perturbations and low-frequency oscillations in a separated boundary-layer flow. In Fifth AIAA Theoretical Fluid Mechanics Conference, AIAA Paper 2008–4323. Seattle.CrossRefGoogle Scholar
Farazmand, M. & Sapsis, T. P. 2019 Closed-loop adaptive control of extreme events in a turbulent flow. Phys. Rev. E 100, 033110.CrossRefGoogle Scholar
Gibson, J. F. 2014 Channelflow: a spectral Navier–Stokes simulator in C++. Tech. Rep. U. New Hampshire.Google Scholar
Gibson, J. F., Reetz, F., Azimi, S., Ferraro, A., Kreilos, T., Schrobsdorff, H., Farano, M., Yesil, A. F., Schütz, S. S., Culpo, M., et al. 2019 Channelflow 2.0 (manuscript in preparation). https://www.channelflow.ch.Google Scholar
Grigoriev, R. O. 2000 Symmetry and control: spatially extended chaotic systems. Physica D 140, 171192.CrossRefGoogle Scholar
Grigoriev, R. O. & Cross, M. C. 1998 Controlling physical systems with symmetries. Phys. Rev. E 57, 15501554.CrossRefGoogle Scholar
Henningson, D. S. & Åkervik, E. 2008 The use of global modes to understand transition and perform flow control. Phys. Fluids 20, 031302.CrossRefGoogle Scholar
Hof, B., van Doorne, C. W. H., Westerweel, J. & Nieuwstadt, F. T. M. 2005 Turbulence regeneration in pipe flow at moderate Reynolds numbers. Phys. Rev. Lett. 95, 214502.CrossRefGoogle ScholarPubMed
Hof, B., van Doorne, C. W. H., Westerweel, J., Nieuwstadt, F. T. M., Faisst, H., Eckhardt, B., Wedin, H., Kerswell, R. R. & Waleffe, F. 2004 Experimental observation of nonlinear traveling waves in turbulent pipe flow. Science 305 (5690), 15941598.CrossRefGoogle ScholarPubMed
Itano, T. & Toh, S. 2001 The dynamics of bursting process in wall turbulence. J. Phys. Soc. Japan 70, 703716.CrossRefGoogle Scholar
Kawahara, G., Uhlmann, M. & van Veen, L. 2012 The significance of simple invariant solutions in turbulent flows. Annu. Rev. Fluid Mech. 44, 203225.CrossRefGoogle Scholar
Kreilos, T. & Eckhardt, B. 2012 Periodic orbits near onset of chaos in plane Couette flow. Chaos 22, 047505.CrossRefGoogle ScholarPubMed
Lauga, E. & Bewley, T. R. 2003 The decay of stabilizability with Reynolds number in a linear model of spatially developing flows. Proc. R. Soc. Lond. A 459, 20772095.CrossRefGoogle Scholar
Lauga, E. & Bewley, T. R. 2004 Performance of a linear robust control strategy on a nonlinear model of spatially developing flows. J. Fluid Mech. 512, 343374.CrossRefGoogle Scholar
Linkmann, M. & Eckhardt, B. 2019 Dynamic feedback control through wall suction in shear flows. Proc. Appl. Maths Mech. 19, e201900369.Google Scholar
Nagata, M. 1990 Three-dimensional finite-amplitude solutions in plane Couette flow: bifurcation from infinity. J. Fluid Mech. 217, 519527.CrossRefGoogle Scholar
Orszag, S. A. 1971 a Accurate solution of the Orr–Sommerfeld stability equation. J. Fluid Mech. 50, 689703.CrossRefGoogle Scholar
Orszag, S. A. 1971 b On the elimination of aliasing in finite-difference schemes by filtering high-wavenumber components. J. Atmos. Sci. 28, 1074.2.0.CO;2>CrossRefGoogle Scholar
Pringle, C. C. T. & Kerswell, R. R. 2010 Using nonlinear transient growth to construct the minimal seed for shear flow turbulence. Phys. Rev. Lett. 105, 154502.CrossRefGoogle ScholarPubMed
Pringle, C. C. T., Willis, A. P. & Kerswell, R. R. 2012 Minimal seeds for shear flow turbulence: using nonlinear transient growth to touch the edge of chaos. J. Fluid Mech. 702, 415443.CrossRefGoogle Scholar
Pringle, C. C. T., Willis, A. P. & Kerswell, R. R. 2015 Fully localised nonlinear energy growthoptimals in pipe flow. Phys. Fluids 27, 064102.CrossRefGoogle Scholar
Quadrio, M., Frohnapfel, B. & Hasegawa, Y. 2016 Does the choice of the forcing term affect flow statistics in DNS of turbulent channel flow? Eur. J. Mech. B/Fluids 55, 286293.CrossRefGoogle Scholar
Reetz, F., Kreilos, T. & Schneider, T. M. 2019 Exact invariant solution reveals the origin of self-organized oblique turbulent-laminar stripes. Nat. Commun. 10, 2277.CrossRefGoogle ScholarPubMed
Reetz, F. & Schneider, T. M. 2020 Invariant states in inclined layer convection. Part 1. Temporal transitions along dynamical connections between invariant states. J. Fluid Mech. 898, A22.Google Scholar
Reetz, F., Subramanian, P. & Schneider, T. M. 2020 Invariant states in inclined layer convection. Part 2. Bifurcations and connections between branches of invariant states. J. Fluid Mech. 898, A23.Google Scholar
Rowley, C. W. 2005 Model reduction for fluids, using proper orthogonal decomposition. Intl. J. Bifurcation Chaos 15, 9971013.CrossRefGoogle Scholar
Rowley, C. W. & Dawson, S. T. M. 2017 Model reduction for flow analysis and control. Annu. Rev. Fluid Mech. 49, 387417.CrossRefGoogle Scholar
Schneider, T. M., Eckhardt, B. & Yorke, J. A. 2007 Turbulence transition and the edge of chaos in pipe flow. Phys. Rev. Lett. 99, 034502.CrossRefGoogle ScholarPubMed
Sieber, J., Omel'chenko, O. E. & Wolfrum, M. 2014 Controlling unstable chaos: stabilizing chimera states by feedback. Phys. Rev. Lett. 112, 054102.CrossRefGoogle ScholarPubMed
Skufca, J. D., Yorke, J. A. & Eckhardt, B. 2006 Edge of chaos in a parallel shear flow. Phys. Rev. Lett. 96, 174101.CrossRefGoogle Scholar
Sontag, E. D. 1998 Mathematical Control Theory: Deterministic Finite Dimensional Systems. Springer.CrossRefGoogle Scholar
Suri, B., Tithof, J., Grigoriev, R. O. & Schatz, M. F. 2017 Forecasting fluid flows using the geometry of turbulence. Phys. Rev. Lett. 118, 114501.CrossRefGoogle ScholarPubMed
Taylor, J. R., Deusebio, E., Caulfield, C. P. & Kerswell, R. R. 2016 A new method for isolating turbulent states in transitional stratified plane Couette flow. J. Fluid Mech. 808, R1.CrossRefGoogle Scholar
Willis, A. P., Duguet, Y., Omel'chenko, O. & Wolfrum, M. 2017 Surfing the edge: using feedback control to find nonlinear solutions. J. Fluid Mech. 831, 579591.CrossRefGoogle Scholar
Willis, A. P., Short, K. Y. & Cvitanović, P. 2016 Symmetry reduction in high dimensions, illustrated in a turbulent pipe. Phys. Rev. E 93, 022204.CrossRefGoogle Scholar
Wolfe, C. L. & Samelson, R. M. 2006 Normal-mode analysis of a Baroclinic wave-mean oscillation. J. Atmos. Sci. 63, 27952812.CrossRefGoogle Scholar
Zammert, S. & Eckhardt, B. 2014 Streamwise and doubly-localised periodic orbits in plane Poiseuille flow. J. Fluid Mech. 761, 348359.CrossRefGoogle Scholar
Zammert, S. & Eckhardt, B. 2015 Crisis bifurcations in plane Poiseuille flow. Phys. Rev. E 91, 041003(R).CrossRefGoogle ScholarPubMed