Article contents
Linear and nonlinear dynamics of a differentially heated slot under gravity modulation
Published online by Cambridge University Press: 26 April 2006
Abstract
In this paper we consider the effect of sinusoidal gravity modulation of size ε on a differentially heated infinite slot in which a vertical temperature stratification is imposed on the walls. The slot problem is characterized by a Rayleigh number, Prandtl number, and the imposed uniform stratification on the walls. When ε is small, we show by regular perturbation expansion in ε that the modulation interacts with the natural mode of the system to produce resonances, confirming the results of Farooq & Homsy (1994). For ε ∼ O(1) we show that the modulation can potentially destabilize the longwave eigenmodes of the slot problem. This is achieved by projecting the governing equations onto the least-damped eigenmode, and investigating the resulting Mathieu equation via Floquet theory. No instability was found at large values of the Prandtl number and also low stratification, when there are no travelling modes present.
To understand the nonlinear saturation mechanisms of this growth, we consider a two-mode model of the slot problem with the primary mode being the least-damped travelling parallel-flow mode as before and a secondary mode of finite wavenumber. By projecting the governing equations onto these two modes we obtained the equations for temporal evolution of the two modes. For modulation amplitudes above critical, the growth of the primary mode is saturated resulting in a stable weak nonlinear synchronous oscillation of the primary mode. An unexpected and intriguing feature of the coupling is that the secondary mode exhibits very high-frequency bursts which appear once every cycle of the forcing frequency.
- Type
- Research Article
- Information
- Copyright
- © 1996 Cambridge University Press
References
- 35
- Cited by