Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-07T18:57:05.076Z Has data issue: false hasContentIssue false

Large-eddy simulation of transition to turbulence in a boundary layer developing spatially over a flat plate

Published online by Cambridge University Press:  26 April 2006

FréDÉRic Ducros, Pierre Comte
Affiliation:
Institut de Mécanique de Grenoble, Laboratoire des Ecoulements Géophysiques et Industriels, BP53, F-38041 Grenoble Cedex 9, France
Marcel Lesieur
Affiliation:
Institut de Mécanique de Grenoble, Laboratoire des Ecoulements Géophysiques et Industriels, BP53, F-38041 Grenoble Cedex 9, France

Abstract

It is well known that subgrid models such as Smagorinsky's cannot be used for the spatially growing simulation of the transition to turbulence of flat-plate boundary layers, unless large-amplitude perturbations are introduced at the upstream boundary: they are over-dissipative, and the flow simulated remains laminar. This is also the case for the structure-function model (SF) of Métais & Lesieur (1992). In the present paper we present a sequel to this model, the filtered-structure-function (FSF) model. It consists of removing the large-scale fluctuations of the field before computing its second-order structure function. Analytical arguments confirm the superiority of the FSF model over the SF model for large-eddy simulations of weakly unstable transitional flows. The FSF model is therefore used for the simulation of a quasi-incompressible (M∞ = 0.5) boundary layer developing spatially over an adiabatic flat plate, with a low level of upstream forcing. With the minimal resolution 650 × 32 × 20 grid points covering a range of streamwise Reynolds numbers Rex1 ε [3.4 × 105, 1.1 × 106], transition is obtained for 80 hours of time-processing on a CRAY 2 (whereas DNS of the whole transition takes about ten times longer). Statistics of the LES are found to be in acceptable agreement with experiments and empirical laws, in the laminar, transitional and turbulent parts of the domain. The dynamics of low-pressure and high-vorticity distributions is examined during transition, with particular emphasis on the neighbourhood of the critical layer (defined here as the height of the fluid travelling at a speed equal to the phase speed of the incoming Tollmien–Schlichting waves). Evidence is given that a subharmonic-type secondary instability grows, followed by a purely spanwise (i.e. time-independent) mode which yields peak-and-valley splitting and transition to turbulence. In the turbulent region, flow visualizations and local instantaneous profiles are provided. They confirm the presence of low- and high-speed streaks at the wall, weak hairpins stretched by the flow and bursting events. It is found that most of the vorticity is produced in the spanwise direction, at the wall, below the high-speed streaks. Isosurfaces of eddy viscosity confirm that the FSF model does not perturb transition much, and acts mostly in the vicinity of the hairpins.

Type
Research Article
Copyright
© 1996 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Institut National Polytechnique de Grenoble (INPG), Université Joseph Fourier (UJF), et Centre National de la Recherche Scientifique (CNRS).

References

Adams, N. A. & Kleiser, L. 1993 Numerical simulation of transition in a compressible flat plate boundary layer. In Transitional and Turbulent Compressible Flows. ASME-FEX, vol. 151, pp. 101110.
Antonia, R. A., Teitel, M., Kim, J. & Browne, L. W. B. 1992 Low-Reynolds-number effects in a fully developed channel flow. J. Fluid Mech. 236, 579605.Google Scholar
Bartello, P., Métais, O. & Lesieur, M. 1994 Coherent structures in rotating three-dimensional turbulence. J. Fluid Mech. 273, 129.Google Scholar
Batchelor, G. K. 1953 The Theory of Homogeneous Turbulence. Cambridge University Press.
Batchelor, G. K., Canuto, V. M. & Chasnov, J. R. 1992 Homogeneous buoyancy-generated turbulence. J. Fluid. Mech. 235, 325349.Google Scholar
Benney, D. J. & Gustavsson, L. H. 1981 A new mechanism for linear and non-linear hydrodynamic instability. Stud. Appl. Maths 64, 185209.Google Scholar
Blackwelder, R. F. & Eckelmann, H. 1979 Streamwise vortices associated with the bursting phenomenon. J. Fluid. Mech. 94, 577594.Google Scholar
Chollet, J.-P. & Lesieur, M. 1981 Parameterization of small scales of three-dimensional isotropic turbulence utilizing spectral closures. J. Atmos. Sci. 38, 27472757.Google Scholar
Comte, P., Ducros, F., Silvestrini, J., David, E., Lamballais, E., Lesieur, M. & Métais, O. 1994 Simulation des grandes echelles d'ecoulements transitionnels. Proc. 74th. Fluid Dynamics AGARD Symp. Application of Direct and Large-Eddy Simulation to Transition and Turbulence’, Chania, Crete, 18–21 April 1994, pp. 14.114.12.
Comte, P., Lesieur, M. & Lamballais, E. 1992 Large- and small-scale stirring of vorticity and a passive scalar in a 3-D temporal mixing layer. Phys. Fluids A 4, 27612778.Google Scholar
Cousteix, J. 1989 Turbulence et Couche Limite, p. 625. Cepadues.
Deardorff, J. W. 1970 A three-dimensional numerical study of turbulent channel flow at large Reynolds numbers. J. Fluid. Mech. 41, 453480.Google Scholar
Domaradski, J. M., Liu, W. & Brachet M. E. 1993 An analysis of subgrid-scales interactions in numerically simulated isotropic turbulence. Phys. Fluids A 7, 17471759.Google Scholar
Ducros, F. 1995 Simulations numériques directes et des grandes échelles de couches limites compressibles. PhD thesis, INPG.
Ducros, F., Comte, P. & Lesieur, M. 1995 Direct and large-eddy simulations of a supersonic boundary layer. Selected Proceedings of Turbulent Shear Flows 9, pp. 283300. Springer.
Eckelmann, H. 1970 Experimentelle Untersuchungen in einer turbulenten Kanalströmung mit starken viskosen Wandschichten. MPI f. Strömungsforschung und AVA Göttingen Nr. 48.
Fasel, H. & Konzelmann, U. 1990 Non-parallel stability of a flat-plate boundary layer using the complete Navier-Stokes equations, J. Fluid Mech. 221, 311347.Google Scholar
Favre, A. 1965 Equations des gaz turbulents compressibles. J. Méc. 4, 361421.Google Scholar
Germano, M., Piomelli, U., Moin, P. & Cabot, W. 1991, A dynamic subgrid-scale eddy-viscosity model. Phys. Fluids A 3, 17601765.Google Scholar
Ghosal, S., Lund, T. S., Moin, P. & Akselvoll, K. 1995 A dynamic localization model for large-eddy simulation of turbulent flows. J. Fluid Mech. 286, 229255.Google Scholar
Gilbert, N. & Kleiser, L. 1988 Near-wall phenomena in transition to turbulence. Proc. Intl Seminar on Near-Wall Turbulence, Dubrovnik, Yugoslavia.
Gonze, M. A. 1993 Simulation numérique des sillages en transition à la turbulence. PhD thesis, INPG.
Guo, Y., Adams, N. A. & Kleiser, L. 1995 Modeling of non-parallel effects in temporal direct numerical simulations of compressible boundary-layer transition. Theor. Comput. Fluid Dyn. 7, 141157.Google Scholar
Hall, A. A. & Hislop, G. S. 1938 Experiments on the transition of the laminar boundary layer on a flat plate. Aero. Res. Council, London, RM 1843.
Hamilton, J. M., Kim, J. Waleffe, F. 1995 Regeneration mechanisms of near-wall turbulence structure J. Fluid Mech. 287, 317348.Google Scholar
Herbert, T. 1988 Secondary instability of boundary layers. Ann. Rev. Fluid Mech. 20, 487526.Google Scholar
Herbert, T., Bertolotti, F. P. & Santos, G. R. 1986 Floquet analysis of secondary instability in shear flows. In Stability of Time-Dependent and Spatially Varying Flows. (ed. D. L. Dwoyer & M. Y. Hussaini), pp. 4357. Spinger.
Jimenez, J. & Moin, P. 1991 The minimal flow unit in near-wall turbulence. J. Fluid Mech. 225, 213240.Google Scholar
Joslin, R. D., Streett, C. L. & Chang C. L. 1993 Spatial direct numerical simulation of boundary-layer transition mechanisms: validation of PSE theory. Theor. Comput. Fluid Dyn. 4, 271288.Google Scholar
Kachanov, Yu. S. & Levchenko, V. Ya. 1984 The resonant interaction of disturbances at laminar-turbulent transition in a boundary layer. J. Fluid Mech. 138, 209247.Google Scholar
Klebanoff, P. S., Tidstrom, K. D. & Sargent, L. M. 1962 The three-dimensional nature of turbulent boundary layer instability. J. Fluid Mech. 12, 134.Google Scholar
Kleiser, L. & Zang, T. A. 1991 Numerical simulation of transition in wall-bounded shear flows. Ann. Rev. Fluid Mech. 23, 495537.Google Scholar
Kline, S. J., Reynolds, W. C., Schraub, F. A. & Runstadler, P. W. 1967 The structure of turbulent-boundary layers. J. Fluid. Mech. 30, 741773.Google Scholar
Kraichnan, R. H. 1976 Eddy viscosity in two and three dimensions. J. Atmos. Sci. 33, 15211536.Google Scholar
Lamballais, E., Lesieur, M. & Métais, O. 1996 Effects of spanwise rotation on the vorticity stretching in transitional and turbulent channel flow. Intl J. Heat and Fluid Flow, 17.Google Scholar
Landahl, M. T. & Mollo-Christensen, E. 1992 Turbulence and Random Processes in Fluid Mechanics, 2nd Edn. Cambridge University Press.
Lesieur, M. 1990 Turbulence in Fluids, 2nd Edn. Kluwer.
Lesieur, M., Comte, P. & Métais, O. 1995 Numerical simulation of coherent vortices in turbulence, Appl. Mech. Rev. 48, 121149.Google Scholar
Lesieur, M. & Rogallo, R 1989 Large-eddy simulation of passive scalar diffusion in isotropic turbulence. Phys. Fluids A 1, 7795.Google Scholar
Métais, O. & Lesieur, M. 1992 Spectral large-eddy simulation of isotropic and stably stratified turbulence. J. Fluid Mech. 239, 157194.Google Scholar
Métais, O., Yanase, S., Flores, C., Bartello, P. & Lesieur, M. 1992 Reorganization of coherent vortices in shear layers under the action of solid-body rotation. In Turbulent Shear Flows, pp. 414430. Springer.
Moin, P. & Kim, J. 1982 Numerical investigation of turbulent channel flow. J. Fluid Mech. 118, 341377.Google Scholar
Murlis, J., Tsai, H. M. & Bradshaw, P. 1982 The structure of turbulent boundary layer at low Reynolds numbers. J. Fluid Mech. 122, 1356.Google Scholar
Normand, X. & Lesieur, M. 1992 Direct and large-eddy simulation of transition in the compressible boundary layer. Theor. Comput. Fluid Dyn. 3, 231252.Google Scholar
Pruett, C. D. & Zang, T. A. 1992 Direct numerical simulation of laminar breakdown in high-speed, axisymmetric boundary layers. Theor. Comput. Fluid Dyn. 3, 345367.Google Scholar
Rai, M. M. & Moin, P. 1993 Direct numerical simulation of transition and turbulence in a spatially evolving boundary layer. J. Comput. Phys. 109, 169192.Google Scholar
Robinson, S. K. 1991 Coherent motions in the turbulent boundary layer. Ann. Rev. Fluid Mech. 23, 601639.Google Scholar
Sabot, J. & Comte-Bellot, G. 1976 Intermittency of coherent structure in the core region of fully developed turbulent pipe flow. J. Fluid Mech. 74, 767796.Google Scholar
Santos, G. R. & Herbert, T. 1986 Combination resonance in boundary layers. Bull. Am. Phys. Soc. 31, 1718.Google Scholar
Schlichting, H. 1987 Boundary Layer Theory, reissue of 7th Edn. McGraw Hill.
Silveira, N., Grand, D., Métais, O. & Lesieur M. 1993 A numerical investigation of the coherent structures of turbulence behind a backward-facing step. J. Fluid Mech. 256, 125.Google Scholar
Silvestrini, J. H., Comte, P. & Lesieur, M. 1995 DNS and LES of incompressible mixing layers developing spatially. 10th Symp. on Turbulent Shear Flows, University Park, USA, Aug. 14–16.
Smagorinsky, J. 1963 General circulation experiments with the primitive equations, I: The basic experiment. Mon. Weather Rev. 91, 99163.2.3.CO;2>CrossRefGoogle Scholar
Spalart, P. R. 1988 Direct simulation of a turbulent boundary layer up to Rθ = 1410. J. Fluid Mech. 187, 6198.Google Scholar
Spalart, P. R. & Yang, K. S. 1987 Numerical study of ribbon-induced transition in Blasius flow. J. Fluid. Mech. 178, 345365.Google Scholar
Taylor, G. I. 1915 Eddy motion in the atmosphere. Phil. Trans. R. Soc. Lond. A 215, 126.Google Scholar
Thomas, A. S. W. 1987 Experiments on secondary instabilities in boundary layers. Proc. US Natl. Congr. Appl. Mech., 10th, Austin, Tex. pp. 436444. ASME.
Thompson, K. W. 1987 Time dependent boundary conditions for hyperbolic systems. J. Comput. Phys. 68, 124.Google Scholar
Thumm, A., Wolz, W. & Fasel, H. 1989 Numerical simulation of spatially growing three-dimensional waves in compressible boundary layers. Third IUTAM Symp. Laminar-Turbulent Transition, Toulouse, 11–15 septembre 1989 (ed. D. Arnal & R. Michel), pp. 303308. Springer.
Townsend, A. A. 1976 The Structure of Turbulent Shear Flow, 2nd Edn. Cambridge University Press.
Voke, P. R. & Yang, Z. 1993 Numerical studies of the mechanisms of bypass transition in the flat plate boundary layer. Proc. Turbulent Shear Flows 9, Kyoto.
Yang, Z. & Voke, P. 1993 Large-eddy simulation of transition under turbulence. Rep. ME-FD/93.12, Dept Mech. Eng., University of Surrey.
Yoshizawa, Y. 1986 Statistical theory for compressible turbulent shear flows, with the application to subgrid modelling. Phys. Fluids 29, 21522164.Google Scholar