Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-09T08:34:56.611Z Has data issue: false hasContentIssue false

Large-eddy simulation and modelling of Taylor–Couette flow

Published online by Cambridge University Press:  12 March 2020

W. Cheng*
Affiliation:
Mechanical Engineering, Physical Science and Engineering Division,King Abdullah University of Science and Technology, Thuwal23955-6900, Saudi Arabia Graduate Aerospace Laboratories, California Institute of Technology, CA91125, USA
D. I. Pullin
Affiliation:
Graduate Aerospace Laboratories, California Institute of Technology, CA91125, USA
R. Samtaney
Affiliation:
Mechanical Engineering, Physical Science and Engineering Division,King Abdullah University of Science and Technology, Thuwal23955-6900, Saudi Arabia
*
Email address for correspondence: [email protected]

Abstract

Wall-resolved large-eddy simulations (LES) of the incompressible Navier–Stokes equations together with empirical modelling for turbulent Taylor–Couette (TC) flow are presented. LES were performed with the inner cylinder rotating at angular velocity $\unicode[STIX]{x1D6FA}_{i}$ and the outer cylinder stationary. With $R_{i},R_{o}$ the inner and outer radii respectively, the radius ratio is $\unicode[STIX]{x1D702}=0.909$. The subgrid-scale stresses are represented using the stretched-vortex subgrid-scale model while the flow is resolved close to the wall. LES is implemented in the range $Re_{i}=10^{5}{-}10^{6}$ where $Re_{i}=\unicode[STIX]{x1D6FA}_{i}R_{i}d/\unicode[STIX]{x1D708}$ and $d=R_{o}-R_{i}$ is the cylinder gap. It is shown that the LES can capture the salient features of the flow, including the quantitative behaviour of spanwise Taylor rolls, the log variation in the inner-cylinder mean-velocity profile and the angular momentum redistribution due to the presence of Taylor rolls. A simple empirical model is developed for the turbulent, TC flow for both a stationary outer cylinder and also for co-rotating cylinders. This consists of near-wall, log-like turbulent wall layers separated by an annulus of constant angular momentum. Model results include the Nusselt number $Nu$ (torque required to maintain the flow) and measures of the wall-layer thickness as functions of both the Taylor number $Ta$ and $\unicode[STIX]{x1D702}$. These are compared with results from measurement, direct numerical simulation and the LES. A model extension to rough-wall turbulent flow is described. This shows an asymptotic, fully rough-wall state where the torque is independent of $Re_{i}/Ta$, and where $Nu\sim Ta^{1/2}$.

Type
JFM Papers
Copyright
© The Author(s), 2020. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Andereck, C. D., Liu, S. S. & Swinney, H. L. 1986 Flow regimes in a circular Couette system with independently rotating cylinders. J. Fluid Mech. 164, 155183.CrossRefGoogle Scholar
Berghout, P., Zhu, X., Chung, D., Verzicco, R., Stevens, R. JAM. & Lohse, D. 2019 Direct numerical simulations of Taylor–Couette turbulence: the effects of sand grain roughness. J. Fluid Mech. 873, 260286.CrossRefGoogle Scholar
Cantwell, B. J. 2019 A universal velocity profile for smooth wall pipe flow. J. Fluid Mech. 878, 834874.CrossRefGoogle Scholar
Chavanne, A. X., Chilla, F., Castaing, B., Hebral, B., Chabaud, B. & Chaussy, J. 1997 Observation of the ultimate regime in Rayleigh–Bénard convection. Phys. Rev. Lett. 79 (19), 36483651.CrossRefGoogle Scholar
Cheng, W., Pullin, D. I. & Samtaney, R. 2018a Large-eddy simulation of flow over a rotating cylinder: the lift crisis at Re D = 6 × 104. J. Fluid Mech. 855, 371407.CrossRefGoogle Scholar
Cheng, W., Pullin, D. I. & Samtaney, R. 2018b Large-eddy simulation of flow over a grooved cylinder up to transcritical Reynolds numbers. J. Fluid Mech. 835, 327362.CrossRefGoogle Scholar
Cheng, W., Pullin, D. I., Samtaney, R., Zhang, W. & Gao, W. 2017 Large-eddy simulation of flow over a cylinder with Re D from 3. 9 × 103 to 8. 5 × 105 : a skin-friction perspective. J. Fluid Mech. 820, 121158.CrossRefGoogle Scholar
Chung, D. & Pullin, D. I. 2009 Large-eddy simulation and wall modelling of turbulent channel flow. J. Fluid Mech. 631, 281309.CrossRefGoogle Scholar
Colebrook, C. F. 1939 Turbulent flow in pipes, with particular reference to the transition region between the smooth and rough pipe laws. J. Inst. Civil Engrs Lond. 11, 133156.CrossRefGoogle Scholar
Coles, D. 1965 Transition in circular Couette flow. J. Fluid Mech. 21 (3), 385425.CrossRefGoogle Scholar
Corless, R. M., Gonnet, G. H., Hare, D. E. G., Jeffrey, D. J. & Knuth, D. E. 1996 On the Lambert W function. Adv. Comput. Math. 5 (1), 329359.CrossRefGoogle Scholar
Gao, W., Zhang, W., Cheng, W. & Samtaney, R. 2019 Wall-modelled large-eddy simulation of turbulent flow past airfoils. J. Fluid Mech. 873, 174210.CrossRefGoogle Scholar
Grossmann, S. & Lohse, D. 2011 Multiple scaling in the ultimate regime of thermal convection. Phys. Fluids 23 (4), 045108.CrossRefGoogle Scholar
Grossmann, S., Lohse, D. & Sun, C. 2016 High–Reynolds number Taylor–Couette turbulence. Annu. Rev. Fluid Mech. 48, 5380.CrossRefGoogle Scholar
Hama, F. R. 1954 Boundary-layer characteristics for smooth and rough surfaces. Trans. Soc. Nav. Archit. Mar. Engrs (62), 333351.Google Scholar
Huisman, S. G., van Gils, D. P. M., Grossmann, S., Sun, C. & Lohse, D. 2012 Ultimate turbulent Taylor–Couette flow. Phys. Rev. Lett. 108, 024501.CrossRefGoogle ScholarPubMed
Huisman, S. G., Scharnowski, S., Cierpka, C., Kähler, C. J., Lohse, D. & Sun, C. 2013 Logarithmic boundary layers in strong Taylor–Couette turbulence. Phys. Rev. Lett. 110, 264501.CrossRefGoogle ScholarPubMed
Jiménez, J. 2004 Turbulent flows over rough walls. Annu. Rev. Fluid Mech. 36 (1), 173196.CrossRefGoogle Scholar
Kim, K. C. & Adrian, R. J. 1999 Very large-scale motion in the outer layer. Phys. Fluids 11 (2), 417422.CrossRefGoogle Scholar
Lathrop, D. P., Fineberg, J. & Swinney, H. L. 1992a Transition to shear-driven turbulence in Couette–Taylor flow. Phys. Rev. A 46 (10), 6390.CrossRefGoogle Scholar
Lathrop, D. P., Fineberg, J. & Swinney, H. L. 1992b Turbulent flow between concentric rotating cylinders at large Reynolds number. Phys. Rev. Lett. 68 (10), 1515.CrossRefGoogle Scholar
Lee, M. & Moser, R. D. 2015 Direct numerical simulation of turbulent channel flow up to Re 𝜏 approximate to 5200. J. Fluid Mech. 774, 395415.CrossRefGoogle Scholar
Lee, M. & Moser, R. D. 2018 Extreme-scale motions in turbulent plane Couette flows. J. Fluid Mech. 842, 128145.CrossRefGoogle Scholar
Lundgren, T. S. 1982 Strained spiral vortex model for turbulent fine structure. Phys. Fluids 25 (12), 21932203.CrossRefGoogle Scholar
Marusic, I., Mathis, R. & Hutchins, N. 2010 High Reynolds number effects in wall turbulence. Intl J. Heat Fluid Flow 31 (3,SI), 418428.CrossRefGoogle Scholar
Merbold, S., Brauckmann, H. J. & Egbers, C. 2013 Torque measurements and numerical determination in differentially rotating wide gap Taylor–Couette flow. Phys. Rev. E 87 (2), 023014.CrossRefGoogle ScholarPubMed
Misra, A. & Pullin, D. I. 1997 A vortex-based subgrid stress model for large-eddy simulation. Phys. Fluids 9, 24432454.CrossRefGoogle Scholar
Moody, L. F. 1944 Friction factors for pipe flow. Trans. ASME 66 (8), 671684.Google Scholar
Morinishi, Y., Lund, T. S., Vasilyev, O. V. & Moin, P. 1998 Fully conservative higher order finite difference schemes for incompressible flow. J. Comput. Phys. 143 (1), 90124.CrossRefGoogle Scholar
Nikuradse, J. 1933 Strömungsgestze in rauhen Rohren. V.D.I. Forschungsheft (361), 122.Google Scholar
Ostilla-Mónico, R., van der Poel, E. P., Verzicco, R., Grossmann, S. & Lohse, D. 2014 Exploring the phase diagram of fully turbulent Taylor–Couette flow. J. Fluid Mech. 761, 126.CrossRefGoogle Scholar
Ostilla-Mónico, R., Verzicco, R., Grossmann, S. & Lohse, D. 2016 The near-wall region of highly turbulent Taylor–Couette flow. J. Fluid Mech. 788, 95117.CrossRefGoogle Scholar
Ostilla-Mónico, R., Verzicco, R. & Lohse, D. 2015 Effects of the computational domain size on direct numerical simulations of Taylor–Couette turbulence with stationary outer cylinder. Phys. Fluids 27 (2), 025110.CrossRefGoogle Scholar
Pirozzoli, S., Bernardini, M. & Orlandi, P. 2014 Turbulence statistics in Couette flow at high Reynolds number. J. Fluid Mech. 758, 327343.CrossRefGoogle Scholar
Pullin, D. I., Inoue, M. & Saito, N. 2013 On the asymptotic state of high Reynolds number, smooth-wall turbulent flows. Phys. Fluids 25 (1), 015116.CrossRefGoogle Scholar
Sacco, F., Verzicco, R. & Ostilla-Mónico, R. 2019 Dynamics and evolution of turbulent Taylor rolls. J. Fluid Mech. 870, 970987.CrossRefGoogle Scholar
Shockling, M. A., Allen, J. J. & Smits, A. J. 2006 Roughness effects in turbulent pipe flow. J. Fluid Mech. 564, 267285.CrossRefGoogle Scholar
Simens, M. P., Jiménez, J., Hoyas, S. & Mizuno, Y. 2009 A high-resolution code for turbulent boundary layers. J. Comput. Phys. 228 (11), 42184231.CrossRefGoogle Scholar
Taylor, G. I. 1923 Stability of a viscous liquid contained between two rotating cylinders. Phil. Trans. R. Soc. Lond. A 223, 289343.Google Scholar
Van Gils, D. P. M., Huisman, S. G., Grossmann, S., Sun, C. & Lohse, D. 2012 Optimal Taylor–Couette turbulence. J. Fluid Mech. 706, 118149.CrossRefGoogle Scholar
Van Gils, D. P. M., Huisman, S. G., Bruggert, G. W., Sun, C. & Lohse, D. 2011 Torque scaling in turbulent Taylor–Couette flow with co- and counter rotating cylinders. Phys. Rev. Lett. 106 (2), 024502.Google Scholar
Voelkl, T., Pullin, D. I. & Chan, D. C. 2000 A physical-space version of the stretched-vortex subgrid-stress model for large-eddy simulation. Phys. Fluids 12, 18101825.CrossRefGoogle Scholar
Wereley, S. T. & Lueptow, R. M. 1999 Velocity field for Taylor–Couette flow with an axial flow. Phys. Fluids 11 (12), 36373649.CrossRefGoogle Scholar
Willert, C. E., Soria, J., Stanislas, M., Klinner, J., Amili, O., Eisfelder, M., Cuvier, C., Bellani, G., Fiorini, T. & Talamelli, A. 2017 Near-wall statistics of a turbulent pipe flow at shear Reynolds numbers up to 40 000. J. Fluid Mech. 826, R5.CrossRefGoogle Scholar
Zang, Y., Street, R. L. & Koseff, J. R. 1994 A non-staggered grid, fractional step method for time-dependent incompressible Navier–Stokes equations in curvilinear coordinates. J. Comput. Phys. 114, 1833.CrossRefGoogle Scholar
Zhang, W., Cheng, W., Gao, W., Qamar, A. & Samtaney, R. 2015 Geometrical effects on the airfoil flow separation and transition. Comput. Fluids 15, 6073.CrossRefGoogle Scholar
Zhu, X., Verschoof, R. A., Bakhuis, D., Huisman, S. G., Verzicco, R., Sun, C. & Lohse, D. 2018 Wall roughness induces asymptotic ultimate turbulence. Nature Phys. 14, 417423.CrossRefGoogle Scholar