Hostname: page-component-78c5997874-xbtfd Total loading time: 0 Render date: 2024-11-09T12:19:09.516Z Has data issue: false hasContentIssue false

Lagrangian chaos in confined two-dimensional oscillatory convection

Published online by Cambridge University Press:  27 October 2014

L. Oteski*
Affiliation:
CNRS, Laboratoire d’Informatique pour la Mécanique et les Sciences de l’Ingénieur (LIMSI), F-91403 Orsay, France University Paris-Sud, F-91405 Orsay, France
Y. Duguet
Affiliation:
CNRS, Laboratoire d’Informatique pour la Mécanique et les Sciences de l’Ingénieur (LIMSI), F-91403 Orsay, France
L. R. Pastur
Affiliation:
CNRS, Laboratoire d’Informatique pour la Mécanique et les Sciences de l’Ingénieur (LIMSI), F-91403 Orsay, France University Paris-Sud, F-91405 Orsay, France
*
Email address for correspondence: [email protected]

Abstract

The chaotic advection of passive tracers in a two-dimensional confined convection flow is addressed numerically near the onset of the oscillatory regime. We investigate here a differentially heated cavity with aspect ratio 2 and Prandtl number 0.71 for Rayleigh numbers around the first Hopf bifurcation. A scattering approach reveals different zones depending on whether the statistics of return times exhibit exponential or algebraic decay. Melnikov functions are computed and predict the appearance of the main mixing regions via the break-up of the homoclinic and heteroclinic orbits. The non-hyperbolic regions are characterised by a larger number of Kolmogorov–Arnold–Moser (KAM) tori. Based on the numerical extraction of many unstable periodic orbits (UPOs) and their stable/unstable manifolds, we suggest a coarse-graining procedure to estimate numerically the spatial fraction of chaos inside the cavity as a function of the Rayleigh number. Mixing is almost complete before the first transition to quasi-periodicity takes place. The algebraic mixing rate is estimated for tracers released from a localised source near the hot wall.

Type
Papers
Copyright
© 2014 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Åkervik, E., Brandt, L., Henningson, D. S., Hœpffner, J., Marxen, O. & Schlatter, P. 2006 Steady solutions of the Navier–Stokes equations by selective frequency damping. Phys. Fluids 18, 068102.CrossRefGoogle Scholar
Aref, H. 1984 Stirring by chaotic advection. J. Fluid Mech. 143, 121.CrossRefGoogle Scholar
Aref, H.2014 Frontiers of chaotic advection. Preprint arXiv:1403.2953v1.CrossRefGoogle Scholar
Artuso, R. 1999 Correlation decay and return time statistics. Physica D 131, 6877.CrossRefGoogle Scholar
Artuso, R. & Manchein, C. 2009 Instability statistics and mixing rates. Phys. Rev. E 80, 036210.CrossRefGoogle ScholarPubMed
Biemond, J. J. B., de Moura, A. P. S., Grebogi, G. K. C. & Nijmeijer, H. 2008 Onset of chaotic advection in open flows. Phys. Rev. E 78, 016317.CrossRefGoogle ScholarPubMed
Budyansky, M., Uleysky, M. & Prants, S. 2004 Hamiltonian fractals and chaotic scattering of passive particles by a topographical vortex and an alternating current. Physica D 195, 369378.CrossRefGoogle Scholar
Burroughs, E. A., Romero, L. A., Lehoucq, R. B. & Salinger, A. G. 2002 Linear stability of flow in a differentially heated cavity via large-scale eigenvalue calculations. J. Numer. Meth. Heat Fluid Flow 14, 803822.CrossRefGoogle Scholar
Cencini, M., Cecconi, F. & Vulpiani, A. 2010 Chaos: from Simple Models to Complex Systems, Series on Advances in Statistical Mechanics. World Scientific.Google Scholar
Chabreyrie, R., Chandre, C., Singh, P. & Aubry, N. 2011 Complete chaotic mixing in an electro-osmotic flow by destabilization of key periodic pathlines. Phys. Fluids 23, 072002.CrossRefGoogle Scholar
Falkovich, G. 2004 Mixing in Encyclopedy of Nonlinear Science (ed. Scott, A.), Routledge.Google Scholar
Feudel, F., Witt, A., Gellert, M., Kurths, J., Gregobi, C. & Sanjuán, M. A. F. 2005 Intersections of stable and unstable manifolds: the skeleton of Lagrangian chaos. Chaos Solitons Fractals 24, 947956.CrossRefGoogle Scholar
Fountain, G. O., Khakhar, D. V., Mezic, I. & Ottino, J. M. 2000 Chaotic mixing in a bounded three-dimensional flow. J. Fluid Mech. 417, 265301.CrossRefGoogle Scholar
Gouillart, E., Dauchot, O., Dubrulle, B., Roux, S. & Thiffeault, J.-L. 2008 Slow decay of concentration variance due to no-slip walls in chaotic mixing. Phys. Rev. E 78, 026211.CrossRefGoogle ScholarPubMed
Grigoriev, R. & Schuster, H. G. 2011 Transport and Mixing in Laminar Flows: From Microfluidics to Oceanic Currents. Wiley-VCH.CrossRefGoogle Scholar
Guckenheimer, J. & Holmes, P. 1983 Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields, Applied Mathematical Sciences. Springer.CrossRefGoogle Scholar
Hackborn, W. W., Ulucakli, M. E. & Yuster, T. 1997 A theoretical and experimental study of hyperbolic and degenerate mixing regions in a chaotic Stokes flow. J. Fluid Mech. 346, 2348.CrossRefGoogle Scholar
Jung, C., Tél, T. & Ziemniak, E. 1993 Application of scattering chaos to particle transport in a hydrodynamical flow. Chaos 3, 555568.CrossRefGoogle Scholar
Lai, Y.-C. & Tél, T. 2011 Transient Chaos: Complex Dynamics on Finite Time Scales, Applied Mathematical Sciences, vol. 173. Springer.CrossRefGoogle Scholar
Le Quéré, P. & Behnia, M. 1998 From onset of unsteadiness to chaos in a differentially heated square cavity. J. Fluid Mech. 359, 81107.CrossRefGoogle Scholar
Melnikov, V. K. 1963 On the stability of the center for time periodic perturbations. Trans. Moscow Math. Soc. 12, 1.Google Scholar
Mercader, I., Batiste, O., Ramirez-Piscina, L., Ruiz, X., Rüdiger, S. & Casademunt, J. 2005 Bifurcations and chaos in single-roll natural convection with low Prandtl number. Phys. Fluids 17, 104108.CrossRefGoogle Scholar
Mercader, I., Batiste, O. & Ruiz, X. 2004 Quasi-periodicity and chaos in a differentially heated cavity. Theor. Comput. Fluid Dyn. 18, 221229.CrossRefGoogle Scholar
Mitchell, R. Jr & Grigoriev, R. O. 2012 Instabilities and mixing in two-dimensional Kolmogorov flow. Preprint arXiv:1212.2890.Google Scholar
Neufeld, Z. & Tél, T. 1998 Advection in chaotically time-dependent open flows. Phys. Rev. E 57 (3), 2832.CrossRefGoogle Scholar
Ott, E. & Tél, T. 1993 Chaotic scattering: an introduction. Chaos 3, 417426.CrossRefGoogle ScholarPubMed
Ottino, J. M. 1990 The Kinematics of Mixing: Stretching, Chaos and Transport. Cambridge University Press.Google Scholar
Paolucci, S. & Chenoweth, D. R. 1989 Transition to chaos in a differentially heated vertical cavity. J. Fluid Mech. 201, 379410.CrossRefGoogle Scholar
Peacock, T. & Dabiri, J. 2010 Lagrangian coherent structures. Chaos 20, 017501.CrossRefGoogle ScholarPubMed
Pikovsky, A. & Popovych, O. 2003 Persistent patterns in deterministic mixing flows. Europhys. Lett. 61, 625631.CrossRefGoogle Scholar
Poincaré, H. 1892 Les Méthodes Nouvelles de la Mécanique Céleste. Gauthier-Villars.Google Scholar
Pratta, L. J., Rypina, I. I., Özgökmen, T. M., Wang, P., Childs, H. & Bebieva, H. 2014 Chaotic advection in a steady, three-dimensional, Ekman-driven eddy. J. Fluid Mech. 738, 143183.CrossRefGoogle Scholar
Ravi, M. R., Henkes, R. A. W. M. & Hoogendoorn, C. J. 1994 On the high-Rayleigh-number structure of steady laminar natural-convection flow in a square enclosure. J. Fluid Mech. 262, 325351.CrossRefGoogle Scholar
Rom-Kedar, V., Leonard, A. & Wiggins, S. 1990 An analytical study of transport, mixing and chaos in an unsteady vortical flow. J. Fluid Mech. 24, 347394.CrossRefGoogle Scholar
Salman, H. & Haynes, P. H. 2007 A numerical study of passive scalar evolution in peripheral regions. Phys. Fluids 19, 067101.CrossRefGoogle Scholar
Stolovitzky, G., Kaper, T. J. & Sirovich, L. 1995 A simple model of chaotic advection and scattering. Chaos 5 (4), 671686.CrossRefGoogle ScholarPubMed
Stremler, M. A. 2008 Mixing measures. In Encyclopedia of Microfluidics and Nanofluidics, Springer.Google Scholar
Sturman, R., Ottino, J. M. & Wiggins, S. 2006 The Mathematical Foundations of Mixing: The Linked Twist Map as a Paradigm in Applications: Micro to Macro, Fluids to Solids. Cambridge University Press.CrossRefGoogle Scholar
Tric, E., Labrosse, G. & Betrouni, M. 2000 A first incursion into the 3D structure of natural convection of air in a differentially heated cavity from accurate numerical solutions. Intl J. Heat Mass Transfer 43, 40434056.CrossRefGoogle Scholar
Wiggins, S. 1988 Global Bifurcations and Chaos: Analytical Methods, Applied Mathematical Sciences, vol. 73. Springer.CrossRefGoogle Scholar
Wiggins, S. & Ottino, J. M. 2004 Foundations of chaotic mixing. Phil. Trans. R. Soc. Lond. A 362, 937970.CrossRefGoogle ScholarPubMed
Xin, S. & Le Quéré, P. 1995 Direct numerical simulations of two-dimensional chaotic natural convection in a differentially heated cavity of aspect ratio 4. J. Fluid Mech. 304, 87118.CrossRefGoogle Scholar
Xin, S. & Le Quéré, P. 2006 Natural-convection in air-filled, differentially heated cavities with adiabatic horizontal walls. Numer. Heat Transfer A 50, 437466.CrossRefGoogle Scholar
Xin, S. & Le Quéré, P. 2012 Stability of two-dimensional (2D) natural convection flows in air-filled differentially heated cavities: 2D/3D disturbances. Fluid Dyn. Res. 44, 031419.CrossRefGoogle Scholar
Ziemniak, E. M., Jung, C. & Tél, T. 1994 Tracer dynamics in open hydrodynamical flows as chaotic scattering. Physica D 76, 123146.CrossRefGoogle Scholar