Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-27T00:39:25.698Z Has data issue: false hasContentIssue false

Kinetic-energy-flux-constrained model using an artificial neural network for large-eddy simulation of compressible wall-bounded turbulence

Published online by Cambridge University Press:  03 December 2021

Changping Yu
Affiliation:
LHD, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, PR China School of Engineering Science, University of Chinese Academy of Sciences, Beijing 100049, PR China
Zelong Yuan
Affiliation:
Department of Mechanics and Aerospace Engineering, Southern University of Science and Technology, Shenzhen 518055, PR China
Han Qi
Affiliation:
LHD, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, PR China School of Engineering Science, University of Chinese Academy of Sciences, Beijing 100049, PR China
Jianchun Wang*
Affiliation:
Department of Mechanics and Aerospace Engineering, Southern University of Science and Technology, Shenzhen 518055, PR China
Xinliang Li*
Affiliation:
LHD, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, PR China School of Engineering Science, University of Chinese Academy of Sciences, Beijing 100049, PR China
Shiyi Chen
Affiliation:
Department of Mechanics and Aerospace Engineering, Southern University of Science and Technology, Shenzhen 518055, PR China State Key Laboratory of Turbulence and Complex Systems, College of Engineering, Peking University, Beijing 100871, PR China
*
Email addresses for correspondence: [email protected], [email protected]
Email addresses for correspondence: [email protected], [email protected]

Abstract

Kinetic energy flux (KEF) is an important physical quantity that characterizes cascades of kinetic energy in turbulent flows. In large-eddy simulation (LES), it is crucial for the subgrid-scale (SGS) model to accurately predict the KEF in turbulence. In this paper, we propose a new eddy-viscosity SGS model constrained by the properly modelled KEF for LES of compressible wall-bounded turbulence. The new methodology has the advantages of both accurate prediction of the KEF and strong numerical stability in LES. We can obtain an approximate KEF by the tensor-diffusivity model, which has a high correlation with the real value. Then, using the artificial neural network method, the local ratios between the real KEF and the approximate KEF are accurately modelled. Consequently, the SGS model can be improved by the product of that ratio and the approximate KEF. In LES of compressible turbulent channel flow, the new model can accurately predict mean velocity profile, turbulence intensities, Reynolds stress, temperature–velocity correlation, etc. Additionally, for the case of a compressible flat-plate boundary layer, the new model can accurately predict some key quantities, including the onset of transitions and transition peaks, the skin-friction coefficient, the mean velocity in the turbulence region, etc., and it can also predict the energy backscatters in turbulence. Furthermore, the proposed model also shows more advantages for coarser grids.

Type
JFM Papers
Copyright
© The Author(s), 2021. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Bardina, J., Ferziger, J. & Reynolds, W. 1980 Improved subgrid-scale models for large-eddy simulation. AIAA Paper, 80-1357.Google Scholar
Bodart, J. & Larsson, J. 2012 Sensor-based computation of transitional flows using wall-modelled large eddy simulation. Center for Turbulence Research Annual Briefs 2012, pp. 229–240.Google Scholar
Borue, V. & Orszag, S.A 1998 Local energy flux and subgrid-scale statistics in three-dimensional turbulence. J. Fluid Mech. 366, 131.CrossRefGoogle Scholar
Chai, X. & Mahesh, K. 2012 Dynamic-equation model for large-eddy simulation of compressible flows. J. Fluid Mech. 699, 385413.CrossRefGoogle Scholar
Chaté, H. & Manneville, P. 1987 Transition to turbulence via spatio-temporal intermittency. Phys. Rev. Lett. 58 (2), 112.CrossRefGoogle ScholarPubMed
Chen, S., Xia, Z., Pei, S., Wang, J., Yang, Y., Xiao, Z. & Shi, Y. 2012 Reynolds-stress-constrained large-eddy simulation of wall-bounded turbulent flows. J. Fluid Mech. 703, 128.CrossRefGoogle Scholar
Chollet, J.P. & Lesieur, M. 1981 Parameterization of small scales of three-dimensional isotropic turbulence utilizing spectral closures. J. Atmos. Sci. 38 (12), 27472757.2.0.CO;2>CrossRefGoogle Scholar
Clark, R.A., Ferziger, J.H. & Reynolds, W.C. 1979 Evaluation of subgrid-scale models using an accurately simulated turbulent flow. J. Fluid Mech. 91, 116.CrossRefGoogle Scholar
Coleman, G.N, Kim, J. & Moser, R.D. 1995 A numerical study of turbulent supersonic isothermal-wall channel flow. J. Fluid Mech. 305, 159183.CrossRefGoogle Scholar
Deardorff, J.W. 1970 A numerical study of three-dimensional turbulent channel flow at large Reynolds numbers. J. Fluid Mech. 41, 453480.CrossRefGoogle Scholar
Ducros, F., Comte, P. & Lesieur, M. 1996 Large-eddy simulation of transition to turbulence in a boundary layer developing spatially over a flat plate. J. Fluid Mech. 326, 136.Google Scholar
Duraisamy, K., Iaccarino, G. & Xiao, H. 2019 Turbulence modeling in the age of data. Annu. Rev. Fluid Mech. 51, 357377.CrossRefGoogle Scholar
Eyink, G.L. 2006 Multi-scale gradient expansion of the turbulent stress tensor. J. Fluid Mech. 549, 159190.CrossRefGoogle Scholar
Foysi, H., Sarkar, S. & Friedrich, R. 2004 Compressibility effects and turbulence scalings in supersonic channel flow. J. Fluid Mech. 509, 207216.CrossRefGoogle Scholar
Fukami, K., Fukagata, K. & Taira, K. 2019 Super-resolution reconstruction of turbulent flows with machine learning. J. Fluid Mech. 870, 106120.CrossRefGoogle Scholar
Fureby, C. 2008 Towards the use of large eddy simulation in engineering. Prog. Aerosp. Sci. 44, 381396.CrossRefGoogle Scholar
Garnier, E., Adams, N. & Sagaut, P. 2000 Large Eddy Simulation for Compressible Flows. Springer.Google Scholar
Georgiadis, N.J., Alexander, J.I. & Reshotko, E. 2001 Development of a hybrid rans/les method for compressible mixing layer. AIAA Paper, 2001-0289.Google Scholar
Germano, M., Piomelli, U., Moin, P. & Cabot, W.H. 1991 A dynamic subgrid-scale eddy viscosity model. Phys. Fluids A 3 (7), 17601765.CrossRefGoogle Scholar
Ghosal, S., Lund, T.S., Moin, P. & Akselvoll, K. 1995 A dynamic localization model for large-eddy simulation of turbulent flows. J. Fluid Mech. 286, 229255.CrossRefGoogle Scholar
Ghosh, S., Foysi, H. & Friedrich, R. 2010 Compressible turbulent channel and pipe flow: similarities and differences. J. Fluid Mech. 648, 155181.CrossRefGoogle Scholar
Güemes, A., Discetti, S., Ianiro, A., Sirmacek, B., Azizpour, H. & Vinuesa, R. 2021 From coarse wall measurements to turbulent velocity fields through deep learning. Phys. Fluids 33, 075121.CrossRefGoogle Scholar
Horiuti, K. 1986 On the use of sgs modelling in the simulation of transition in plane channel flow. J. Phys. Soc. Japan 55 (5), 15281541.CrossRefGoogle Scholar
Huai, X., Joslin, R.D. & Piomelli, U. 1997 Large-eddy simulation of transition to turbulence in boundary layers. J. Theor. Comput. Fluid Dyn. 9 (2), 149163.CrossRefGoogle Scholar
Kim, H., Kim, J., Won, S. & Lee, C. 2021 Unsupervised deep learning for super-resolution reconstruction of turbulence. J. Fluid Mech. 910, A29.CrossRefGoogle Scholar
Kim, J. & Lee, C. 2020 Prediction of turbulent heat transfer using convolutional neural networks. J. Fluid Mech. 882, A18.CrossRefGoogle Scholar
Kingerma, D.P. & Ba, J. 2019 Adam: a method for stochastic optimization. arXiv:1412.6980.Google Scholar
Kolmogorov, A.N. 1941 The local structure of turbulence in incompressible viscous fluid for very large Reynolds numbers. C. R. Acad. Sci. URSS 30, 301305.Google Scholar
Larchevêque, L., Sagaut, P., , T.H. & Comte, P. 2004 Large-eddy simulation of a compressible flow in a three-dimensional open cavity at high Reynolds number. J. Fluid Mech. 516, 265301.CrossRefGoogle Scholar
Leoni, P.C.D., Zaki, T.A., Karniadakis, G. & Meneveau, C. 2021 Two-point stress-strain-rate correlation structure and non-local eddy viscosity in turbulent flows. J. Fluid Mech. 914, A6.CrossRefGoogle Scholar
Lesieur, M. & Métais, O. 1996 New trends in large-eddy simulations of turbulence. Annu. Rev. Fluid Mech. 28, 4582.CrossRefGoogle Scholar
Li, W., Fan, Y., Modesti, D. & Cheng, C. 2019 Decomposition of the mean skin-friction drag in compressible turbulent channel flows. J. Fluid Mech. 875, 101123.CrossRefGoogle Scholar
Lilly, D.K. 1992 A proposed modification of the germano subgrid-scale closure method. Phys. Fluids A 238, 633635.CrossRefGoogle Scholar
Ling, J., Kurzawski, A. & Templeton, J.P. 2016 Reynolds averaged turbulence modelling using deep neural networks with embedded invariance. J. Fluid Mech. 807, 155166.CrossRefGoogle Scholar
Liu, S., Meneveau, C. & Katz, J. 1994 On the properties of similarity subgrid-scale models as deduced from measurements in a turbulent jet. J. Fluid Mech. 275, 83119.CrossRefGoogle Scholar
Liu, B., Tang, J., Huang, H. & Lu, X. 2020 Deep learning methods for super-resolution reconstruction of turbulent flows. Phys. Fluids 32, 025105.CrossRefGoogle Scholar
Martin, M.P.ino, Piomelli, U. & Candler, G.V 2000 Subgrid-scale models for compressible large-eddy simulations. J. Theor. Comput. Fluid Dyn. 13 (5), 361376.Google Scholar
Maulik, R. & San, O. 2017 A neural network approach for the blind deconvolution of turbulent flows. J. Fluid Mech. 831, 151181.CrossRefGoogle Scholar
Meneveau, C. & Katz, J. 2000 Scale-invariance and turbulence models for lage-eddy simulation. Annu. Rev. Fluid Mech. 32, 132.CrossRefGoogle Scholar
Meneveau, C. & Lund, T.S. 1997 The dynamic smagorinsky model and scale-dependent coefficients in the viscous range of turbulence. Phys. Fluids 9 (12), 39323934.CrossRefGoogle Scholar
Meneveau, C., Lund, T.S. & Cabot, W.H. 1996 A lagrangian dynamic subgrid-scale model of turbulence. J. Fluid Mech. 319, 353385.CrossRefGoogle Scholar
Meneveau, C & Sreenivasan, K.R. 1987 Simple multifractal cascade model for fully developed turbulence. Phys. Rev. Lett. 59 (13), 1424.CrossRefGoogle ScholarPubMed
Moin, P., Squires, K., Cabot, W. & Lee, S. 1991 A dynamic subgrid-scale model for compressible turbulence and scalar transport. Phys. Fluids A 3 (11), 27462757.CrossRefGoogle Scholar
Morinishi, Y., Tamano, S. & Nakabayashi, K. 2004 Direct numerical simulation of compressible turbulent channel flow between adiabatic and isothermal walls. J. Fluid Mech. 512, 273308.CrossRefGoogle Scholar
Moser, R.D., Haering, S.W. & Yalla, G.R. 2021 Statistical properties of subgrid-scale turbulence models. Annu. Rev. Fluid Mech. 53, 255286.CrossRefGoogle Scholar
Nicoud, F. & Ducros, F. 1999 Subgrid-scale stress modelling based on the square of the velocity gradient tensor. Flow Turbul. Combust. 63, 183200.CrossRefGoogle Scholar
Park, J. & Choi, H. 2021 Toward neural-network-based large eddy simulation: application to turbulent channel flow. J. Fluid Mech. 914, A16.CrossRefGoogle Scholar
Pecnik, R. & Patel, A. 2017 Scaling and modelling of turbulence in variable property channel flows. J. Fluid Mech. 823, R1.CrossRefGoogle Scholar
Pickering, E., Rigas, G., Schmidt, O.T., Sipp, D. & Colonius, T. 2021 Optimal eddy viscosity for resolvent-based models of coherent structures in turbulent jets. J. Fluid Mech. 917, A29.CrossRefGoogle Scholar
Piomelli, U. 1993 High reynolds number calculations using the dynamic subgrid-scale stress model. Phys. Fluids A 5 (6), 14841490.CrossRefGoogle Scholar
Piomelli, U. 1999 Large-eddy simulation: achievements and challenges. Prog. Aerosp. Sci. 35 (4), 335362.CrossRefGoogle Scholar
Pirozzoli, S., Grasso, F. & Gatski, T.B. 2004 Direct numerical simulation and analysis of a spatially evolving supersonic turbulent boundary layer at $M= 2.25$. Phys. Fluids 16, 530545.CrossRefGoogle Scholar
Pope, S.B. 2000 Turbulent Flows. Cambridge University Press.CrossRefGoogle Scholar
Porté-Agel, F., Meneveau, C. & Parlange, M. 2000 A scale-dependent dynamic model for large-eddy simulation: application to a neutral atmospheric boundary layer. J. Fluid Mech. 415, 261284.CrossRefGoogle Scholar
Sayadi, T. & Moin, P. 2012 large eddy simulation of controlled transition to turbulence. Phys. Fluids 24, 114103.CrossRefGoogle Scholar
Smagorinsky, J. 1963 General circulation experiments with the primitive equations: I. The basic experiment. Mon. Weath. Rev. 91, 99164.2.3.CO;2>CrossRefGoogle Scholar
Tritton, D.J 2012 Physical Fluid Dynamics. Springer Science & Business Media.Google Scholar
Verstappen, R. 2004 A synthesis of similarity and eddy-viscosity models. In Direct and Large-Eddy Simulation V, pp. 271–278.Google Scholar
Vinuesa, R. & Brunton, S.L. 2021 The potential of machine learning to enhance computational fluid dynamics. arXiv:2110.02085.Google Scholar
Voke, P. 1996 Subgrid-scale modelling at low mesh Reynolds number. Theor. Comput. Fluid Dyn. 8, 131143.CrossRefGoogle Scholar
Vollant, V., Balarac, G. & Corre, C. 2017 Subgrid-scale scalar flux modelling based on optimal estimation theory and machine-learning procedures. J. Turbul. 18 (9), 854878.CrossRefGoogle Scholar
Vreman, A.W. 2004 An eddy-viscosity subgrid-scale model for turbulent shear flow: algebraic theory and applications. Phys. Fluids 16, 36703681.CrossRefGoogle Scholar
Vreman, A.W., Geurts, B.J. & Deen, N.G. 2004 Large-eddy simulation of particle-laden turbulent channel flow. In Direct and Large-Eddy Simulation V, pp. 271–278.Google Scholar
Vreman, B., Geurts, B.J., Deen, N.G., Kuipers, J.A.M. & Kuerten, J.G.M. 2009 Two- and four-way coupled euler-lagrangian large-eddy simulation of particle-laden turbulent channel flow. Flow Turbul. Combust. 82, 4771.CrossRefGoogle Scholar
Vreman, A.W., Geurts, B. & Kuerten, H. 1995 Subgrid-modelling in les of compressible flow. Appl. Sci. Res. 54, 181203.CrossRefGoogle Scholar
Vreman, B., Geurts, B. & Kuerten, H. 1996 Large-eddy simulation of the temporal mixing layer using the clark model. J. Theor. Comput. Fluid Dyn. 8 (4), 309324.CrossRefGoogle Scholar
Wang, J., Yang, Y., Shi, Y., Xiao, Z., He, X.T. & Chen, S. 2013 Cascade of kinetic energy in three-dimensional compressible turbulence. Phys. Rev. Lett. 110 (21), 214505.CrossRefGoogle ScholarPubMed
Xie, C., Wang, J., Li, H., Wan, M. & Chen, S. 2019 Artificial neural network mixed model for large eddy simulation of compressible isotropic turbulence. Phys. Fluids 31, 085112.Google Scholar
Xie, C., Wang, J. & Weinan, E. 2020 a Modeling subgrid-scale forces by spatial artificial neural networks in large eddy simulation of turbulence. Phys. Rev. Fluids 5, 054606.CrossRefGoogle Scholar
Xie, C., Yuan, Z. & Wang, J. 2020 b Artificial neural network-based nonlinear algebraic models for large eddy simulation of turbulence. Phys. Fluids 32, 115101.CrossRefGoogle Scholar
Yang, X.I.A. & Lv, Y. 2018 A semi-locally scaled eddy viscosity formulation for LES wall models and flows at high speeds. J. Theor. Comput. Fluid Dyn. 32 (5), 617627.CrossRefGoogle Scholar
Yang, X.I.A., Zafar, S., Wang, J.X. & Xiao, H. 2019 Predictive large-eddy-simulation wall modeling via physics-informed neural networks. Phys. Rev. Fluids 4, 034602.CrossRefGoogle Scholar
Yoshizawa, A. 1986 Statistical theory for compressible turbulent shear flows, with the application to subgrid modeling. Phys. Fluids 29, 22552271.CrossRefGoogle Scholar
Yu, C., Hong, R., Xiao, Z. & Chen, S. 2013 Subgrid-scale eddy viscosity model for helical turbulence. Phys. Fluids 25, 095101.CrossRefGoogle Scholar
Yu, C., Xiao, Z. & Li, X. 2016 Dynamic optimization methodology based on subgrid-scale dissipation for large eddy simulation. Phys. Fluids 28 (1), 015113.CrossRefGoogle Scholar
Yuan, Z., Xie, C. & Wang, J. 2020 Deconvolutional artificial neural network models for large eddy simulation of turbulence. Phys. Fluids 32, 115106.CrossRefGoogle Scholar
Zhang, P., Wan, Z. & Sun, D. 2019 Space-time correlations of velocity in a mach 0.9 turbulent round jet. Phys. Fluids 31, 115108.CrossRefGoogle Scholar
Zhou, Z., He, G., Wang, S. & Jin, G. 2019 b Subgrid-scale model for large-eddy simulation of isotropic turbulent flows using an artificial neural network. Comput. Fluids 195, 104319.CrossRefGoogle Scholar
Zhou, H., Li, X., Qi, H. & Yu, C. 2019 a Subgrid-scale model for large-eddy simulation of transition and turbulence in compressible flows. Phys. Fluids 31, 125118.Google Scholar