Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-26T13:34:38.211Z Has data issue: false hasContentIssue false

Ionization and dissociation effects on boundary-layer stability

Published online by Cambridge University Press:  23 November 2020

Fernando Miró Miró*
Affiliation:
Aeronautics and Aerospace Department, Von Karman Institute for Fluid Dynamics, Rhode-Saint-Genèse, 1640, Belgium
Ethan S. Beyak
Affiliation:
Texas A&M University, College Station, TX77843, USA
Fabio Pinna
Affiliation:
Aeronautics and Aerospace Department, Von Karman Institute for Fluid Dynamics, Rhode-Saint-Genèse, 1640, Belgium
Helen L. Reed
Affiliation:
Texas A&M University, College Station, TX77843, USA
*
Email address for correspondence: [email protected]

Abstract

The ever-increasing need for optimized atmospheric-entry and hypersonic-cruise vehicles requires an understanding of the coexisting high-enthalpy phenomena. These phenomena strongly condition the development of instabilities leading to the boundary layer's transition to turbulence. The present article explores how shock waves, internal-energy-mode excitation, species interdiffusion, dissociation and ionization condition boundary-layer perturbation growth related to second-mode instabilities. Linear stability theory and the e$^{N}$ method are applied to laminar base flows over a $10^{\circ }$ wedge with an isothermal wall and free-stream conditions similar to three flight-envelope points in an extreme planetary return. The authors explore a wide range of boundary conditions and flow assumptions, on both the laminar base flow and the perturbation quantities, in order to decouple the various phenomena of interest. Under the assumptions of this study, the cooling of the laminar base flow due to internal-energy-mode excitation, dissociation and ionization is seen to be strongly destabilizing. However, species interdiffusion, dissociation and ionization acting on the perturbation terms are seen to have the opposite effect. The net result of these competing effects ultimately amounts to internal-energy-mode excitation and dissociation being destabilizing, and ionization being stabilizing. The appearance of unstable supersonic modes due to high-enthalpy effects is seen to be linked to the diffusion-flux perturbations, rather than the cooling of the laminar base flow (as is commonly believed). The use of the linearized shock boundary condition was seen to have a minor impact in the $N$-factor envelopes, despite the extremely low relative shock angle.

Type
JFM Papers
Copyright
© The Author(s), 2020. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Anderson, J. D. Jr. 2006 Hypersonic and High Temperature Gas Dynamics, 2nd edn. American Institute of Aeronautics and Astronautics.CrossRefGoogle Scholar
Aris, R. 1962 Vectors, Tensors, and the Basic Equations of Fluid Mechanics, 2nd edn. Dover - Prentice Hall.Google Scholar
Arnal, D. 1993 Boundary layer transition: predictions based on linear theory. In Special Course on Progress in Transition Modelling AGARD 793. AGARD.Google Scholar
Batista, A. & Kuehl, J. J. 2019 Implications of local wall temperature variations on second-mode instability. AIAA Paper 2019-3084.CrossRefGoogle Scholar
Bellas-Chatzigeorgis, G. 2018 Development of advanced gas-surface interaction models for chemically reacting flows for re-entry conditions. PhD thesis, von Karman Institute and Politecnico di Milano.Google Scholar
Bers, A. 1983 Space-time evolution of plasma instabilities - absolute and convective. In Handbook of Plasma Physics: Basic plasma physics I, Volume 1 (ed. A. A. Galeev & R. N. Sudan), chap. 3.2. North Holland.Google Scholar
Bertolotti, F. P. 1998 The influence of rotational and vibrational energy relaxation on boundary-layer stability. J. Fluid Mech. 372, 93118.CrossRefGoogle Scholar
Bitter, N. P. & Shepherd, J. E. 2015 Stability of highly cooled hypervelocity boundary layers. J. Fluid Mech. 778, 586620.CrossRefGoogle Scholar
Bose, D. & Candler, G. V. 1996 Thermal rate constants of the N2+O<>NO+N reaction using ab initio $3A''$ and $3A'$ potential energy surfaces. J. Chem. Phys. 104 (8), 28252833.CrossRefGoogle Scholar
Bose, D. & Candler, G. V. 1997 Thermal rate constants of the O2+N <> NO+O reaction based on the $A2'$ and $A4'$ potential-energy surfaces. J. Chem. Phys. 107 (16), 61366145.CrossRefGoogle Scholar
Brazier, J. P., Aupoix, B. & Cousteix, J. 1991 Second-order effects in hypersonic laminar boundary layers. In Computational Methods in Hypersonic Aerodynamics (ed. T.K.S. Murthy). Kluwer Academic.Google Scholar
Briggs, R. J. 1964 Electron-Stream Interaction with Plasmas. MIT Press.CrossRefGoogle Scholar
Brillouin, L. 1964 Tensors in Mechanics and Elasticity. Academic Press.Google Scholar
Chang, C.-L. 2004 Langley stability and transition analysis code (LASTRAC) version 1.2 user manual. Tech. Rep. TM-2004-213233. NASA.Google Scholar
Chang, C.-L., Kline, H. L. & Li, F. 2019 Effects of wall cooling on supersonic modes in high- enthalpy hypersonic boundary layers over a cone. AIAA Paper 2019-2852.Google Scholar
Chang, C.-L., Vinh, H. & Malik, M. R. 1997 Hypersonic boundary-layer stability with chemical reactions using PSE. AIAA Paper 1997-2012.CrossRefGoogle Scholar
Chapman, S. & Cowling, T. G. 1939 The Mathematical Theory of Non-uniform Gases: An Account of the Kinetic Theory of Viscosity, Thermal Conduction, and Diffusion in Gases. The University Press.Google Scholar
Chiatto, M. 2014 Numerical study of plasma jets by means of linear stability theory. Tech. Rep. VKI PR 2014-04. von Karman Institute for Fluid Dynamics.Google Scholar
Chuvakhov, P. V. & Fedorov, A. V. 2016 Spontaneous radiation of sound by instability of a highly cooled hypersonic boundary layer. J. Fluid Mech. 805, 188206.Google Scholar
Demange, S., Kumar, N., Chiatto, M. & Pinna, F. 2018 Absolute instability in plasma jet. In 7th European Conference on Computational Fluid Dynamics.Google Scholar
Devoto, R. S. 1973 Transport coefficients of ionized argon. Phys. Fluids 16 (5), 616.CrossRefGoogle Scholar
Esfahanian, V. 1991 Computation and stability analysis of laminar flow over a blunt cone in hypersonic flow. PhD thesis, Ohio State University.Google Scholar
Eucken, A. 1913 Über das Wärmeleitvermögen, die spezifische Wärme und die innere Reibung der Gase (in german). Physik. Z. XIV, 324332.Google Scholar
Fedorov, A. V. & Tumin, A. 2011 High-speed boundary-layer instability: old terminology and a new framework. AIAA J. 49 (8), 16471657.CrossRefGoogle Scholar
Fertig, M., Dohr, A. & Frühauf, H.-H. 2001 Transport coefficients for high temperature nonequilibrium air flows. J. Thermophys. Heat Transfer 15 (2), 148156.CrossRefGoogle Scholar
Ferziger, J. H. & Kaper, H. G. 1972 Mathematical Theory of Transport Processes in Gases, 1st edn. North-Holland.Google Scholar
Franko, K. J., MacCormack, R. W. & Lele, S. K. 2010 Effects of chemistry modeling on hypersonic boundary layer linear stability prediction. AIAA Paper 2010-4601.Google Scholar
Fransson, J. H. M., Talamelli, A., Brandt, L. & Cossu, C. 2006 Delaying transition to turbulence by a passive mechanism. Phys. Rev. Lett. 96 (6), 14.CrossRefGoogle ScholarPubMed
Giovangigli, V. 1999 Multicomponent Flow Modeling. 3Island Press.CrossRefGoogle Scholar
Groot, K. J., Miró Miró, F., Beyak, E. S., Moyes, A. J., Pinna, F. & Reed, H. L. 2018 DEKAF: spectral multi-regime basic-state solver for boundary layer stability. AIAA Paper 2018-3380.Google Scholar
Gupta, R. N., Yos, J. M., Thompson, R. A. & Lee, K.-P. 1990 A review of reaction rates and thermodynamic and transport properties for an 11-species air model for chemical and thermal nonequilibrium calculations to 30 000 K. Tech. Rep. RP-1232. NASA.Google Scholar
Gurvich, L., Veyts, I. & Alcock, C. 1989 Thermodynamic Properties of Individual Substances. Vol. 1, Elements O, H(D, T), F, Cl, Br, I, He, Ne, Ar, Kr, Xe, Rn, S, N, P and their Compounds. Part Two. Tables, 4th edn. Hemisphere Publishing Corporation.Google Scholar
Hermanns, M. & Hernández, J. A. 2008 Stable high-order finite-difference methods based on non-uniform grid point distributions. Intl J. Numer. Meth. Fluids 56, 233255.CrossRefGoogle Scholar
Hirschfelder, J. O., Curtiss, C. F. & Bird, R. B. 1954 Molecular Theory of Gases and Liquids, 2nd edn. Wiley.Google Scholar
Howe, J. T. 1989 Hypervelocity atmospheric flight: real gas flow fields. Tech. Rep. TM-101055. NASA.Google Scholar
Hudson, M. L., Chokani, N. & Candler, G. V. 1997 Linear stability of hypersonic flow in thermochemical nonequilibrium. AIAA J. 35 (6), 958964.Google Scholar
Johnson, H. B. & Candler, G. V. 2005 Hypersonic boundary layer stability analysis using PSE-Chem. AIAA Paper 2005-5023.Google Scholar
Klentzman, J. & Tumin, A. 2013 Stability and receptivity of high speed boundary layers in oxygen. AIAA Paper 2013-2882.Google Scholar
Kline, H. L., Chang, C.-L. & Li, F. 2018 Hypersonic chemically reacting boundary-layer stability using LASTRAC. AIAA Paper 2018-3699.CrossRefGoogle Scholar
Knisely, C. P. & Zhong, X. 2019 a Significant supersonic modes and the wall temperature effect in hypersonic boundary layers. AIAA J. 57 (4), 15521566.CrossRefGoogle Scholar
Knisely, C. P. & Zhong, X. 2019 b Sound radiation by supersonic unstable modes in hypersonic blunt cone boundary layers. I. Linear stability theory. Phys. Fluids 31 (2), 024103.Google Scholar
Knisely, C. P. & Zhong, X. 2019 c Sound radiation by supersonic unstable modes in hypersonic blunt cone boundary layers. II. Direct numerical simulation. Phys. Fluids 31 (2), 024104.Google Scholar
Kuehl, J. J. 2018 Thermoacoustic interpretation of second-mode instability. AIAA J. 56 (9), 35853592.CrossRefGoogle Scholar
Lee, J. H. 1985 Basic governing equations for the flight regimes of aeroassisted orbital transfer vehicles. In Progress in Astronautics and Aeronautics: Thermal Design of Aeroassisted Orbital Transfer Vehicles (ed. H. F. Nelson). AIAA.CrossRefGoogle Scholar
Levin, E. & Wright, M. J. 2004 Collision integrals for ion-neutral interactions of nitrogen and oxygen. J. Thermophys. Heat Transfer 18 (1), 143147.Google Scholar
Lyttle, I. & Reed, H. L. 2005 Sensitivity of second-mode linear stability to constitutive models within hypersonic flow. AIAA Paper 2005-889.CrossRefGoogle Scholar
Ma, Y. & Zhong, X. 2004 Receptivity to freestream disturbances of a Mach 10 nonequilibrium reacting oxygen flow over a flat plate. AIAA Paper 2004-256.Google Scholar
Mack, L. M. 1984 Boundary-layer linear stability theory. In Special Course on Stability and Transition of Laminar Flow, AGARD 709. AGARD.Google Scholar
Magin, T. E. & Degrez, G. 2004 Transport algorithms for partially ionized and unmagnetized plasmas. J. Comput. Phys. 198 (2), 424449.Google Scholar
Malik, M. R. 1989 Prediction and control of transition in supersonic and hypersonic boundary layers. AIAA J. 27 (11), 14871493.Google Scholar
Malik, M. R. 1990 Numerical methods for hypersonic boundary layer stability. J. Comput. Phys. 86 (2), 376413.Google Scholar
Malik, M. R. 2003 Hypersonic flight transition data analysis using parabolized stability equations with chemistry effects. J. Spacecr. Rockets 40 (3), 332344.CrossRefGoogle Scholar
Malik, M. R. & Anderson, E. C. 1991 Real gas effects on hypersonic boundary-layer stability. Phys. Fluids 803 (3), 803821.CrossRefGoogle Scholar
Marxen, O., Magin, T. E., Shaqfeh, E. S. G. & Iaccarino, G. 2013 A method for the direct numerical simulation of hypersonic boundary-layer instability with finite-rate chemistry. J. Comput. Phys. 255, 572589.CrossRefGoogle Scholar
Mason, E. A. 1967 Transport coefficients of ionized gases. Phys. Fluids 10 (8), 1827.CrossRefGoogle Scholar
Michalke, A. 1984 Survey on jet instability theory. Prog. Aerosp. Sci. 21, 159199.CrossRefGoogle Scholar
Miró Miró, F. 2020 Numerical investigation of hypersonic boundary-layer stability and transition in the presence of ablation phenomena. PhD thesis, Université Libre de Bruxelles and von Karman Insitute for Fluid Dynamics.Google Scholar
Miró Miró, F., Beyak, E. S., Mullen, D., Pinna, F. & Reed, H. L. 2018 a Ionization and dissociation effects on hypersonic boundary-layer stability. In 31st ICAS Congress. International Council of the Aeronautical Sciences.CrossRefGoogle Scholar
Miró Miró, F., Beyak, E. S., Pinna, F. & Reed, H. L. 2019 High-enthalpy models for boundary-layer stability and transition. Phys. Fluids 31, 044101.CrossRefGoogle Scholar
Miró Miró, F. & Pinna, F. 2017 Linear stability analysis of a hypersonic boundary layer in equilibrium and non-equilibrium. AIAA Paper 2017-4518.CrossRefGoogle Scholar
Miró Miró, F. & Pinna, F. 2018 Effect of uneven wall blowing on hypersonic boundary-layer stability and transition. Phys. Fluids 30, 084106.CrossRefGoogle Scholar
Miró Miró, F. & Pinna, F. 2019 on decoupling ablation effects on boundary-layer stability and transition. AIAA Paper 2019-2854.CrossRefGoogle Scholar
Miró Miró, F., Pinna, F., Beyak, E. S., Barbante, P. & Reed, H. L. 2018 b Diffusion and chemical non-equilibrium effects on hypersonic boundary-layer stability. AIAA Paper 2018-1824.Google Scholar
Morkovin, M. V. 1988 Recent insights into instability and transition to turbulence in open-flow systems. Tech. Rep. CR-181693. NASA.Google Scholar
Mortensen, C. 2018 Toward an understanding of supersonic modes in boundary-layer transition for hypersonic flow over blunt cones. J. Fluid Mech. 846, 789814.CrossRefGoogle Scholar
Mortensen, C. & Zhong, X. 2016 Real-gas and surface-ablation effects on hypersonic boundary-layer instability over a blunt cone. AIAA J. 54 (3), 980998.CrossRefGoogle Scholar
Paredes, P., Choudhari, M. M., Li, F., Jewell, J. S., Kimmel, R. L., Marineau, E. C. & Grossir, G. 2018 Nosetip bluntness effects on transition at hypersonic speeds: experimental and numerical analysis under NATO STO AVT-240. AIAA Paper 2018-0057.CrossRefGoogle Scholar
Paredes, P., Hermanns, M., Le Clainche, S. & Theofilis, V. 2013 Order 104 speedup in global linear instability analysis using matrix formation. Comput. Meth. Appl. Mech. Engng 253, 287304.CrossRefGoogle Scholar
Park, C. 1993 Review of chemical-kinetic problems of future NASA missions. I - Earth entries. J. Thermophys. Heat Transfer 7 (3), 385398.Google Scholar
Park, C., Jaffe, R. L. & Partridge, H. 2001 Chemical-kinetic parameters of hyperbolic earth entry. J. Thermophys. Heat Transfer 15 (1), 7690.CrossRefGoogle Scholar
Pinna, F. 2013 VESTA toolkit: a software to compute transition and stability of boundary layers. AIAA Paper 2013-2616.Google Scholar
Pinna, F. & Groot, K. J. 2014 Automatic derivation of stability equations in arbitrary coordinates and different flow regimes. AIAA Paper 2014-2634.CrossRefGoogle Scholar
Pinna, F., Miró Miró, F., Zanus, L., Padilla Montero, I. & Demange, S. 2019 Automatic derivation of stability equations and their application to hypersonic and high-enthalpy shear flows. In International Conference for Flight Vehicles, Aerothermodynamics and Re-entry Missions and Engineering.Google Scholar
Pinna, F. & Rambaud, P. 2013 Effects of shock on hypersonic boundary layer stability. Prog. Flight Phys. 5, 93106.Google Scholar
Ramshaw, J. D. & Chang, C. H. 1993 Ambipolar diffusion in multicomponent plasmas. Plasma Chem. Plasma P. 13 (3), 489498.CrossRefGoogle Scholar
Reed, H. L., Saric, W. S. & Arnal, D. 1996 Linear stability theory applied to boundary layers. Ann. Rev. Fluid Mech. 28, 389428.CrossRefGoogle Scholar
Ren, J., Fu, S. & Hanifi, A. 2016 Stabilization of the hypersonic boundary layer by finite-amplitude streaks. Phys. Fluids 28, 024110.CrossRefGoogle Scholar
Rini, P. & Vanden Abeele, D. 2007 Elemental diffusion and heat transfer coefficients for mixtures of weakly ionized gases. AIAA Paper 2007-4124.Google Scholar
Rini, P., Vanden Abeele, D. & Degrez, G. 2005 Closed form for the equations of chemically reacting flows under local thermodynamic equilibrium. Phys. Rev. E 72, 011204.CrossRefGoogle ScholarPubMed
Sakakeeny, J., Batista, A. & Kuehl, J. J. 2019 How nose bluntness suppresses second-mode growth. AIAA Paper 2019-3083.CrossRefGoogle Scholar
Scoggins, J. B. 2017 Development of numerical methods and study of coupled flow, radiation, and ablation phenomena for atmospheric entry. PhD thesis, Université Paris-Saclay and VKI.Google Scholar
Scoggins, J. B. & Magin, T. E. 2014 Development of Mutation++: MUlticomponent Thermodynamics And Transport properties for IONized gases library in C++. AIAA Paper 2014-2966.CrossRefGoogle Scholar
Stuckert, G. & Reed, H. L. 1994 Linear disturbances in hypersonic, chemically reacting shock layers. AIAA J. 32 (7), 13841393.CrossRefGoogle Scholar
Stuckert, G. K. 1991 Linear stability theory of hypersonic, chemically reacting viscous flows. PhD thesis, Arizona State University.CrossRefGoogle Scholar
Vincenti, W. G. & Kruger, C. H. 1967 Introduction to Physical Gas Dynamics. Krieger.Google Scholar
White, F. M. 1991 Viscous Fluid Flow, 2nd edn. McGraw-Hill.Google Scholar
Wright, M. J., Bose, D., Palmer, G. E. & Levin, E. 2005 Recommended collision integrals for transport property computations. Part 1. Air species. AIAA J. 43 (12), 25582564.CrossRefGoogle Scholar
Wright, M. J., Hwang, H. H. & Schwenke, D. W. 2007 Recommended collision integrals for transport property computations. Part 2. Mars and Venus entries. AIAA J. 45 (1), 281288.CrossRefGoogle Scholar
Wright, R. L. & Zoby, E. V. 1977 Flight boundary layer transition measurements on a slender cone at Mach 20. AIAA Paper 77-719.CrossRefGoogle Scholar
Yos, J. M. 1963 Transport properties of nitrogen, hydrogen, oxygen, and air to 30 000 K. Tech. Rep. RAD-TM-63-7. Avco Corporation.CrossRefGoogle Scholar
Zanus, L., Miró Miró, F. & Pinna, F. 2019 Weak non-parallel effects on chemically reacting hypersonic boundary layer stability. AIAA Paper 2019-2853.Google Scholar
Zanus, L., Miró Miró, F. & Pinna, F. 2020 Parabolized stability analysis of chemically reacting boundary layer flows in equilibrium conditions. Proc. Inst. Mech. Engrs 234 (1), 7995.CrossRefGoogle Scholar
Zanus, L. & Pinna, F. 2018 Stability analysis of hypersonic flows in local thermodynamic equilibrium conditions by means of nonlinear PSE. AIAA Paper 2018-3696.CrossRefGoogle Scholar
Supplementary material: File

Miró Miró et al. supplementary material

Miró Miró et al. supplementary material

Download Miró Miró et al. supplementary material(File)
File 229.9 KB