Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-25T06:27:56.510Z Has data issue: false hasContentIssue false

Internal wave resonant triads in finite-depth non-uniform stratifications

Published online by Cambridge University Press:  05 July 2017

Dheeraj Varma
Affiliation:
Department of Aerospace Engineering, Indian Institute of Technology Madras, Chennai - 600036, India
Manikandan Mathur*
Affiliation:
Department of Aerospace Engineering, Indian Institute of Technology Madras, Chennai - 600036, India
*
Email address for correspondence: [email protected]

Abstract

We present a theoretical study of nonlinear effects that result from modal interactions in internal waves in a non-uniformly stratified finite-depth fluid with background rotation. A linear wave field containing modes $m$ and $n$ (of horizontal wavenumbers $k_{m}$ and $k_{n}$) at a fixed frequency $\unicode[STIX]{x1D714}$ results in two different terms in the steady-state weakly nonlinear solution: (i) a superharmonic wave of frequency $2\unicode[STIX]{x1D714}$, horizontal wavenumber $k_{m}+k_{n}$ and a vertical structure $\bar{h}_{mn}(z)$ and (ii) a time-independent term (Eulerian mean flow) with horizontal wavenumber $k_{m}-k_{n}$. For some $(m,n)$, $\bar{h}_{mn}(z)$ is infinitely large along specific curves on the $(\unicode[STIX]{x1D714}/N_{0},f/\unicode[STIX]{x1D714})$ plane, where $N_{0}$ and $f$ are the deep ocean stratification and the Coriolis frequency, respectively; these curves are referred to as divergence curves in the rest of this paper. In uniform stratifications, a unique divergence curve occurs on the $(\unicode[STIX]{x1D714}/N_{0},f/\unicode[STIX]{x1D714})$ plane for those $(m,n\neq m)$ that satisfy $(m/3)<n<(3m)$. In the presence of a pycnocline (whose strength is quantified by the maximum stratification $N_{max}$), divergence curves occur for several more modal interactions than those for a uniform stratification; furthermore, a given $(m,n)$ interaction can result in multiple divergence curves on the $(\unicode[STIX]{x1D714}/N_{0},f/\unicode[STIX]{x1D714})$ plane for a fixed $N_{max}/N_{0}$. Nearby high-mode interactions in a uniform stratification and any modal interaction in a non-uniform stratification with a sufficiently strong pycnocline are shown to result in near-horizontal divergence curves around $f/\unicode[STIX]{x1D714}\approx 1$, thus implying that strong nonlinear effects often occur as a result of interaction within triads containing two different modes at the near-inertial frequency. Notably, self-interaction of certain modes in a non-uniform stratification results in one or more divergence curves on the $(\unicode[STIX]{x1D714}/N_{0},f/\unicode[STIX]{x1D714})$ plane, thus suggesting that even arbitrarily small-amplitude individual modes cannot remain linear in a non-uniform stratification. We show that internal wave resonant triads containing modes $m$ and $n$ at frequency $\unicode[STIX]{x1D714}$ occur along the divergence curves, and their existence is guaranteed upon the satisfaction of two different criteria: (i) the horizontal component of the standard triadic resonance criterion $\boldsymbol{k}_{1}+\boldsymbol{k}_{2}+\boldsymbol{k}_{3}=0$ and (ii) a non-orthogonality criterion. For uniform stratifications, criterion (ii) reduces to the vertical component of the standard triadic resonance criterion. For non-uniform stratifications, criterion (ii) seems to be always satisfied whenever criterion (i) is satisfied, thus significantly increasing the number of modal interactions that result in strong nonlinear effects irrespective of the wave amplitudes. We then adapt our theoretical framework to identify resonant triads and hence provide insights into the generation of higher harmonics in two different oceanic scenarios: (i) low-mode internal tide propagating over small- or large-scale topography and (ii) an internal wave beam incident on a pycnocline in the upper ocean, for which our results are in qualitative agreement with the numerical study of Diamessis et al. (Dynam. Atmos. Oceans., vol. 66, 2014, pp. 110–137).

Type
Papers
Copyright
© 2017 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Balmforth, N. J. & Young, W. R. 1999 Radiative damping of near-inertial oscillations in the mixed layer. J. Mar. Res. 57, 561584.CrossRefGoogle Scholar
Bourget, B., Dauxois, T., Joubaud, S. & Odier, P. 2013 Experimental study of parametric subharmonic instability for internal plane waves. J. Fluid Mech. 723, 120.CrossRefGoogle Scholar
Bühler, O. & Holmes-Cerfon, M. 2011 Decay of an internal tide due to random topography in the ocean. J. Fluid Mech. 678, 271293.CrossRefGoogle Scholar
Clark, H. A. & Sutherland, B. R. 2010 Generation, propagation, and breaking of an internal wave beam. Phys. Fluids 22, 076601.CrossRefGoogle Scholar
D’Asaro, E. A. 1989 The decay of wind-forced mixed layer inertial oscillations due to the 𝛽 effect. J. Geophys. Res. 94 (C2), 20452056.CrossRefGoogle Scholar
Diamessis, P. J., Wunsch, S., Delwiche, I. & Richter, M. P. 2014 Nonlinear generation of harmonics through the interaction of an internal wave beam with a model oceanic pycnocline. Dyn. Atmos. Oceans 66, 110137.CrossRefGoogle Scholar
Garrett, C. & Kunze, E. 2007 Internal tide generation in the deep ocean. Annu. Rev. Fluid Mech. 39, 5787.CrossRefGoogle Scholar
Gayen, B. & Sarkar, S. 2013 Degradation of an internal wave beam by parametric subharmonic instability in an upper ocean pycnocline. J. Geophys. Res. 118, 46894698.CrossRefGoogle Scholar
Gerkema, T. 2001 Internal and interfacial tides: beam scattering and local generation of solitary waves. J. Mar. Res. 59 (2), 227255.CrossRefGoogle Scholar
Ghaemsaidi, S. J., Joubaud, S., Dauxois, T., Odier, P. & Peacock, T. 2016 Nonlinear internal wave penetration via parametric subharmonic instability. Phys. Fluids 28, 011703.CrossRefGoogle Scholar
Gill, A. E. 1982 Atmosphere-Ocean Dynamics. Academic Press.Google Scholar
Grisouard, N., Staquet, C. & Gerkema, T. 2011 Generation of internal solitary waves in a pycnocline by an internal wave beam: a numerical study. J. Fluid Mech. 676, 491513.CrossRefGoogle Scholar
Hasselmann, K. 1967 A criterion for nonlinear wave stability. J. Fluid Mech. 30 (04), 737739.CrossRefGoogle Scholar
Hebert, D. & Moum, J. N. 1994 Decay of a near-inertial wave. J. Phys. Oceanogr. 24 (11), 23342351.2.0.CO;2>CrossRefGoogle Scholar
Johnston, T. M. S., Merrifield, M. A. & Holloway, P. E. 2003 Internal tide scattering at the Line Islands Ridge. J. Geophys. Res. 108 (C11), 3365.Google Scholar
Joubaud, S., Munroe, J., Odier, P. & Dauxois, T. 2012 Experimental parametric subharmonic instability in stratified fluids. Phys. Fluids 24, 041703.CrossRefGoogle Scholar
Karimi, H. H. & Akylas, T. R. 2014 Parametric subharmonic instability of internal waves: locally confined beams versus monochromatic wavetrains. J. Fluid Mech. 757, 381402.CrossRefGoogle Scholar
Klymak, J. M., Alford, M. H., Pinkel, R., Lien, R., Yang, Y. J. & Tang, T. 2011 The breaking and scattering of the internal tide on a continental slope. J. Phys. Oceanogr. 41 (5), 926945.CrossRefGoogle Scholar
Koudella, C. R. & Staquet, C. 2006 Instability mechanisms of a two-dimensional progressive internal gravity wave. J. Fluid Mech. 548, 165196.CrossRefGoogle Scholar
LeBlond, P. H. & Mysak, L. A. 1981 Waves in the Ocean. Elsevier.Google Scholar
MacKinnon, J. A. & Winters, K. B. 2005 Subtropical catastrophe: significant loss of low-mode tidal energy at 28.9. Geophys. Res. Lett. 32 (15), L15605.CrossRefGoogle Scholar
Martin, S., Simmons, W. & Wunsch, C. 1972 The excitation of resonant triads by single internal waves. J. Fluid Mech. 53 (01), 1744.CrossRefGoogle Scholar
Mathur, M., Carter, G. S. & Peacock, T. 2014 Topographic scattering of the low mode internal tide in the deep ocean. J. Geophys. Res. 119, 21652182.CrossRefGoogle Scholar
Mercier, M., Mathur, M., Gostiaux, L., Gerkema, T., Magalhaes, J. M., Da Silva, J. C. B. & Dauxois, T. 2012 Soliton generation by internal tidal beams impinging on a pycnocline: laboratory experiments. J. Fluid Mech. 704, 3760.CrossRefGoogle Scholar
Munk, W. & Wunsch, C. 1998 Abyssal recipes II: energetics of tidal and wind mixing. Deep-Sea Res. 45, 19772010.CrossRefGoogle Scholar
Peacock, T. & Tabaei, A. 2005 Visualization of nonlinear effects in reflecting internal wave beams. Phys. Fluids 17, 061702.CrossRefGoogle Scholar
Staquet, C. & Sommeria, J. 2002 Internal gravity waves: from instabilities to turbulence. Annu. Rev. Fluid Mech. 34 (1), 559593.CrossRefGoogle Scholar
Sutherland, B. R. 2016 Excitation of superharmonics by internal modes in non-uniformly stratified fluid. J. Fluid Mech. 793, 335352.CrossRefGoogle Scholar
Tabaei, A. & Akylas, T. R. 2003 Nonlinear internal gravity wave beams. J. Fluid Mech. 482, 141161.CrossRefGoogle Scholar
Tabaei, A., Akylas, T. R. & Lamb, K. G. 2005 Nonlinear effects in reflecting and colliding internal wave beams. J. Fluid Mech. 526, 217243.CrossRefGoogle Scholar
Thorpe, S. A. 1966 On wave interactions in a stratified fluid. J. Fluid Mech. 24 (04), 737751.CrossRefGoogle Scholar
Thorpe, S. A. 1998 Nonlinear reflection of internal waves at a density discontinuity at the base of the mixed layer. J. Phys. Oceanogr. 28 (9), 18531860.2.0.CO;2>CrossRefGoogle Scholar
Wunsch, S. 2015 Nonlinear harmonic generation by diurnal tides. Dyn. Atmos. Oceans 71, 9197.CrossRefGoogle Scholar
Wunsch, S. & Brandt, A. 2012 Laboratory experiments on internal wave interactions with a pycnocline. Exp. Fluids 53 (6), 16631679.CrossRefGoogle Scholar
Wunsch, S., Delwiche, I., Frederick, G. & Brandt, A. 2015 Experimental study of nonlinear harmonic generation by internal waves incident on a pycnocline. Exp. Fluids 56 (5), 114.CrossRefGoogle Scholar
Wunsch, S., Ku, H., Delwiche, I. & Awadallah, R. 2014 Simulations of nonlinear harmonic generation by an internal wave beam incident on a pycnocline. Nonlinear Process. Geophys. 21 (4), 855868.CrossRefGoogle Scholar
Xie, X., Shang, X., Haren, H. & Chen, G. 2013 Observations of enhanced nonlinear instability in the surface reflection of internal tides. Geophys. Res. Lett. 40 (8), 15801586.CrossRefGoogle Scholar
Young, W. R. & Jelloul, M. B. 1997 Propagation of near-inertial oscillations through a geostrophic flow. J. Mar. Res. 55 (4), 735766.CrossRefGoogle Scholar
Young, W. R., Tsang, Y.-K. & Balmforth, N. J. 2008 Near-inertial parametric subharmonic instability. J. Fluid Mech. 607, 2549.CrossRefGoogle Scholar
Zhou, Q. & Diamessis, P. J. 2013 Reflection of an internal gravity wave beam off a horizontal free-slip surface. Phys. Fluids 25 (3), 036601.CrossRefGoogle Scholar