Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-26T16:28:05.595Z Has data issue: false hasContentIssue false

Intermittent air invasion in pervaporating compliant microchannels

Published online by Cambridge University Press:  16 September 2022

Ludovic Keiser
Affiliation:
Univ. Grenoble Alpes, CNRS, LIPhy, 38000 Grenoble, France
Philippe Marmottant
Affiliation:
Univ. Grenoble Alpes, CNRS, LIPhy, 38000 Grenoble, France
Benjamin Dollet*
Affiliation:
Univ. Grenoble Alpes, CNRS, LIPhy, 38000 Grenoble, France
*
Email address for correspondence: [email protected]

Abstract

We explore air invasion in a dead-end compliant water-filled microchannel containing a constriction. The phenomenon is driven by the pervaporation of the liquid present in the channel through the surrounding medium. The penetration is intermittent, jerky and characterised by a stop-and-go dynamics as the bubble escapes the constriction. We demonstrate that this sequence of arrest and jump of the bubble is due to an elasto-capillary coupling between the air–liquid interface and the elastic medium. When the interface enters the constriction, its curvature increases strongly, leading to a depressurisation within the liquid-filled channel that drives a compression of the channel. As the interface is forced to leave the constriction at a given threshold pressure, due to the ongoing loss of liquid content by pervaporation, the pressure is suddenly released, which gives rise to a rapid propagation of the air bubble away from the constriction, and a restoration of the rest shape of the channel. Combining macroscopic observations and confocal imaging, we present a comprehensive experimental study of this phenomenon. In particular, the effect of the channel geometry on the time of arrest in the constriction and the jump length is investigated. Our novel microfluidic design succeeds in mimicking the role of inter-vessel pits in plants, which transiently stop the propagation of air embolisms during long and severe droughts. It is expected to serve as a building block for further biomimetic studies in more complex leaf-like architectures, in order to recover this universal phenomenon of intermittent propagation reported in real leaves.

Type
JFM Papers
Copyright
© The Author(s), 2022. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bacchin, P., Leng, J. & Salmon, J.B. 2022 Microfluidic evaporation, pervaporation, and osmosis: from passive pumping to solute concentration. Chem. Rev. 122, 69386985.CrossRefGoogle ScholarPubMed
Bradley, A.T., Box, F., Hewitt, I.J. & Vella, D. 2019 Wettability-independent droplet transport by Bendotaxis. Phys. Rev. Lett. 122, 074503.CrossRefGoogle ScholarPubMed
Brodribb, T.J., Bienaimé, D. & Marmottant, P. 2016 a Revealing catastrophic failure of leaf networks under stress. Proc. Natl Acad. Sci. USA 113, 48654869.CrossRefGoogle ScholarPubMed
Brodribb, T.J., Holbrook, N.M., Zwieniecki, M.A. & Palma, B. 2005 Leaf hydraulic capacity in ferns, conifers and angiosperms: impacts on photosynthetic maxima. New Phytol. 165, 839846.CrossRefGoogle ScholarPubMed
Brodribb, T.J., Powers, J., Cochard, H. & Choat, B. 2020 Hanging by a thread? Forests and drought. Science 368, 261266.CrossRefGoogle ScholarPubMed
Brodribb, T.J., Skelton, R.P., McAdam, S.A.M., Bienaimé, D., Lucani, C.J. & Marmottant, P. 2016 b Visual quantification of embolism reveals leaf vulnerability to hydraulic failure. New Phytol. 209, 14031409.CrossRefGoogle ScholarPubMed
Bruning, M.A., Costalonga, M., Snoeijer, J.H. & Marín, Á. 2019 Turning drops into bubbles: cavitation by vapor diffusion through elastic networks. Phys. Rev. Lett. 123, 214501.CrossRefGoogle ScholarPubMed
Bruus, H. 2008 Theoretical Microfluidics. Oxford University Press.Google Scholar
Butler, M., Box, F., Robert, T. & Vella, D. 2019 Elasto-capillary adhesion: effect of deformability on adhesion strength and detachment. Phys. Rev. Fluids 4, 033601.CrossRefGoogle Scholar
Chagua Encarnación, K.N., Marmottant, P. & Dollet, B. 2021 Pervaporation-induced drying in networks of channels of variable width. Microfluid Nanofluid 25, 71.CrossRefGoogle Scholar
Choat, B., Brodribb, T.J., Brodersen, C.R., Duursma, R.A., López, R. & Medlyn, B.E. 2018 Triggers of tree mortality under drought. Nature 558, 531539.CrossRefGoogle ScholarPubMed
Choat, B., Drayton, W.M., Brodersen, C., Matthews, M.A., Shackel, K.A., Wada, H. & McElrone, A.J. 2010 Measurement of vulnerability to water stress-induced cavitation in grapevine: a comparison of four techniques applied to a long-vesseled species. Plant Cell Environ. 33, 15021512.Google ScholarPubMed
Choat, B., Jansen, S., Brodribb, T., Cochard, H., Delzon, S., Bhaskar, R., Bucci, S.J., Feild, T.S., Gleason, S.M., Hacke, U.G., et al. 2012 Global convergence in the vulnerability of forests to drought. Nature 491, 752755.CrossRefGoogle ScholarPubMed
Choi, J., Kang, D., Han, S., Kim, S.B. & Rogers, J.A. 2017 Thin, soft, skin-mounted microfluidic networks with capillary bursting valves for chrono-sampling of sweat. Adv. Healthc. Mater. 6, 1601355.CrossRefGoogle ScholarPubMed
Christov, I.C., Cognet, V., Shidhore, T. & Stone, H.A. 2018 Flow rate–pressure drop relation for deformable shallow microfluidic channels. J. Fluid Mech. 841, 267286.CrossRefGoogle Scholar
Cochard, H., Cruiziat, P. & Tyree, M.T. 1992 Use of positive pressures to establish vulnerability curves: further support for the air-seeding hypothesis and implications for pressure-volume analysis. Plant Physiol. 100, 205209.CrossRefGoogle ScholarPubMed
Cochard, H., Delzon, S. & Badel, E. 2015 X-ray microtomography (micro-ct): a reference technology for high-resolution quantification of xylem embolism in trees. Plant Cell Environ. 38, 201206.CrossRefGoogle ScholarPubMed
Comtet, J., Jensen, K.H., Turgeon, R., Stroock, A.D. & Hosoi, A.E. 2017 Passive phloem loading and long-distance transport in a synthetic tree-on-a-chip. Nat. Plants 3, 18.CrossRefGoogle Scholar
Crank, J. 1975 The Mathematics of Diffusion. Oxford University Press.Google Scholar
Dollet, B., Chagua Encarnación, K.N., Gautier, R. & Marmottant, P. 2021 Drying by pervaporation in elementary channel networks. J. Fluid Mech. 906, A6.CrossRefGoogle Scholar
Dollet, B., Lorenceau, É. & Gallaire, F. 2020 Transition from exponentially damped to finite-time arrest liquid oscillations induced by contact line hysteresis. Phys. Rev. Lett. 124, 104502.CrossRefGoogle ScholarPubMed
Dollet, B., Louf, J.F., Alonzo, M., Jensen, K.H. & Marmottant, P. 2019 Drying of channels by evaporation through a permeable medium. J. R. Soc. Interface 16, 20180690.CrossRefGoogle ScholarPubMed
Duan, C., Karnik, R., Lu, M.-C. & Majumdar, A. 2012 Evaporation-induced cavitation in nanofluidic channels. Proc. Natl Acad. Sci. USA 109, 36883693.CrossRefGoogle ScholarPubMed
Ducloué, L., Hazel, A.L., Pihler-Puzović, D. & Juel, A. 2017 a Viscous fingering and dendritic growth under an elastic membrane. J. Fluid Mech. 826, R2.CrossRefGoogle Scholar
Ducloué, L., Hazel, A.L., Thompson, A.B. & Juel, A. 2017 b Reopening modes of a collapsed elasto-rigid channel. J. Fluid Mech. 819, 121146.CrossRefGoogle Scholar
Fontana, J.V., Juel, A., Bergemann, N., Heil, M. & Hazel, A.L. 2021 Modelling finger propagation in elasto-rigid channels. J. Fluid Mech. 916, A27.CrossRefGoogle Scholar
Fukuda, K., Kawaguchi, D., Aihara, T., Ogasa, M.Y., Miki, N.H., Haishi, T. & Umebayashi, T. 2015 Vulnerability to cavitation differs between current-year and older xylem: non-destructive observation with a compact magnetic resonance imaging system of two deciduous diffuse-porous species. Plant Cell Environ. 38, 25082518.CrossRefGoogle ScholarPubMed
Gervais, T., El-Ali, J., Günther, A. & Jensen, K.F. 2006 Flow-induced deformation of shallow microfluidic channels. Lab on a Chip 6, 500507.CrossRefGoogle ScholarPubMed
Géraud, B., Jones, S.A., Cantat, I., Dollet, B. & Méheust, Y. 2016 The flow of a foam in a two-dimensional porous medium. Water Resour. Res. 52, 773790.CrossRefGoogle Scholar
Grotberg, J.B. 1994 Pulmonary flow and transport phenomena. Annu. Rev. Fluid Mech. 26, 529571.CrossRefGoogle Scholar
Grotberg, J.B. & Jensen, O.E. 2004 Biofluid mechanics in flexible tubes. Annu. Rev. Fluid Mech. 36, 121147.CrossRefGoogle Scholar
Hardy, B.S., Uechi, K., Zhen, J. & Kavehpour, H.P. 2009 The deformation of flexible PDMS microchannels under a pressure driven flow. Lab on a Chip 9, 935938.CrossRefGoogle Scholar
Harley, S.J., Glascoe, E.A. & Maxwell, R.S. 2012 Thermodynamic study on dynamic water vapor sorption in Sylgard-184. J. Phys. Chem. B 116, 1418314190.CrossRefGoogle Scholar
Heil, M. & Hazel, A.L. 2011 Fluid–structure interaction in internal physiological flows. Annu. Rev. Fluid Mech. 43, 141162.CrossRefGoogle Scholar
Heil, M. & Hazel, A.L. 2016 Flow in flexible/collapsible tubes. In Fluid–Structure Interaction in Low-Reynolds-Number Flows (ed. C. Duprat & H.A. Stone), pp. 280–312. Royal Society of Chemistry.CrossRefGoogle Scholar
Heil, M., Hazel, A.L. & Smith, J.A. 2008 The mechanics of airway closure. Respir. Physiol. Neurobiol. 163, 214221.CrossRefGoogle ScholarPubMed
Holden, M.A., Kumar, S., Beskok, A. & Cremer, P.S. 2003 Microfluidic diffusion diluter: bulging of PDMS microchannels under pressure-driven flow. J. Micromech. Microengng 13, 412.CrossRefGoogle Scholar
Hölttä, T., Cochard, H., Nikinmaa, E. & Mencuccini, M. 2009 Capacitive effect of cavitation in xylem conduits: results from a dynamic model. Plant Cell Environ. 32, 1021.CrossRefGoogle ScholarPubMed
Hourlier-Fargette, A., Antkowiak, A., Chateauminois, A. & Neukirch, S. 2017 Role of uncrosslinked chains in droplet dynamics on silicon elastomers. Soft Matt. 13, 34843491.CrossRefGoogle Scholar
Jensen, K.H., Rio, E., Hansen, R., Clanet, C. & Bohr, T. 2009 Osmotically driven pipe flows and their relation to sugar transport in plants. J. Fluid Mech. 636, 371396.CrossRefGoogle Scholar
Johnston, I.D., McCluskey, D.K., Tan, C.K.L. & Tracey, M.C. 2014 Mechanical characterization of bulk Sylgard 184 for microfluidics and microengineering. J. Micromech. Microengng 24, 035017.CrossRefGoogle Scholar
Juel, A., Pihler-Puzović, D. & Heil, M. 2018 Instabilities in blistering. Annu. Rev. Fluid Mech. 50, 691714.CrossRefGoogle Scholar
Katifori, E., Szöllősi, G.J. & Magnasco, M.O. 2010 Damage and fluctuations induce loops in optimal transport networks. Phys. Rev. Lett. 104, 048704.CrossRefGoogle ScholarPubMed
Landau, L.D. & Lifshitz, E.M. 1986 Theory of Elasticity, 3rd edn. Elsevier.Google Scholar
Lenormand, R. & Zarcone, C. 1985 Invasion percolation in an etched network: measurement of a fractal dimension. Phys. Rev. Lett. 54, 22262229.CrossRefGoogle Scholar
Ma, X., Maillet, B., Brochard, L., Pitois, O., Sidi-Boulenouar, R. & Coussot, P. 2022 Vapor-sorption coupled diffusion in cellulose fiber pile revealed by magnetic resonance imaging. Phys. Rev. Appl. 17, 024048.CrossRefGoogle Scholar
Måløy, K.J., Feder, J. & Jøssang, T. 1985 Viscous fingering fractals in porous media. Phys. Rev. Lett. 55, 26882691.CrossRefGoogle Scholar
Martínez-Calvo, A., Sevilla, A., Peng, G.G. & Stone, H.A. 2020 Start-up flow in shallow deformable channels. J. Fluid Mech. 885, A25.CrossRefGoogle Scholar
Méheust, Y., Løvoll, G., Måløy, K.J. & Schmittbuhl, J. 2002 Interface scaling in a two-dimensional porous medium under combined viscous, gravity, and capillary effects. Phys. Rev. E 66, 051603.CrossRefGoogle Scholar
Noblin, X., Mahadevan, L., Coomaraswamy, I.A., Weitz, D.A., Holbrook, N.M. & Zwieniecki, M.A. 2008 Optimal vein density in artificial and real leaves. Proc. Natl Acad. Sci. USA 105, 91409144.CrossRefGoogle ScholarPubMed
Panizza, P., Algaba, H., Postic, M., Raffy, G., Courbin, L. & Artzner, F. 2018 Order–disorder structural transitions in mazes built by evaporating drops. Phys. Rev. Lett. 121 (7), 078002.CrossRefGoogle ScholarPubMed
Penvern, H., Zhou, M., Maillet, B., Courtier-Murias, D., Scheel, M., Perrin, J., Weitkamp, T., Bardet, S., Caré, S. & Coussot, P. 2020 How bound water regulates wood drying. Phys. Rev. Appl. 14, 054051.CrossRefGoogle Scholar
Pihler-Puzović, D., Illien, P., Heil, M. & Juel, A. 2012 Suppression of complex fingerlike patterns at the interface between air and a viscous fluid by elastic membranes. Phys. Rev. Lett. 108, 074502.CrossRefGoogle Scholar
Pihler-Puzović, D., Périllat, R., Russell, M., Juel, A. & Heil, M. 2013 Modelling the suppression of viscous fingering in elastic-walled Hele-Shaw cells. J. Fluid Mech. 731, 162183.CrossRefGoogle Scholar
Placet, V. & Delobelle, P. 2015 Mechanical properties of bulk polydimethylsiloxane for microfluidics over a large range of frequencies and aging times. J. Micromech. Microengng 25, 035009.CrossRefGoogle Scholar
Roman, B. & Bico, J. 2010 Elasto-capillarity: deforming an elastic structure with a liquid droplet. J. Phys.: Condens. Matter 22, 493101.Google ScholarPubMed
Skelton, R.P., Brodribb, T.J. & Choat, B. 2017 Casting light on xylem vulnerability in an herbaceous species reveals a lack of segmentation. New Phytol. 214, 561569.CrossRefGoogle Scholar
Snoeijer, J.H. & Andreotti, B. 2013 Moving contact lines: scales, regimes, and dynamical transitions. Annu. Rev. Fluid Mech. 45, 269292.CrossRefGoogle Scholar
Tyree, M.T. & Zimmermann, M.H. 2013 Xylem Structure and the Ascent of Sap. Springer.Google Scholar
Venturas, M.D., Sperry, J.S. & Hacke, U.G. 2017 Plant xylem hydraulics: what we understand, current research, and future challenges. J. Integr. Plant Biol. 59, 356389.CrossRefGoogle ScholarPubMed
Vincent, O. & Marmottant, P. 2017 On the statics and dynamics of fully confined bubbles. J. Fluid Mech. 827, 194224.CrossRefGoogle Scholar
Vincent, O., Marmottant, P., Quinto-Su, P.A. & Ohl, C.-D. 2012 Birth and growth of cavitation bubbles within water under tension confined in a simple synthetic tree. Phys. Rev. Lett. 108, 184502.CrossRefGoogle Scholar
Watson, J.M. & Baron, M.G. 1996 The behaviour of water in poly(dimethylsiloxane). J. Membr. Sci. 110, 4757.CrossRefGoogle Scholar
Wheeler, T.D. & Stroock, A.D. 2008 The transpiration of water at negative pressures in a synthetic tree. Nature 455, 208212.CrossRefGoogle Scholar
Wilkinson, D. & Willemsen, J.F. 1983 Invasion percolation: a new form of percolation theory. J. Phys. A 16, 33653376.CrossRefGoogle Scholar
Winkels, K.G., Peters, I.R., Evangelista, F., Riepen, M., Daerr, A., Limat, L. & Snoeijer, J.H. 2011 Receding contact lines: from sliding drops to immersion lithography. Eur. Phys. J. 192, 195205.Google Scholar

Keiser et al. Supplementary Movie 1

Recording of the pervaporation-induced drying dynamics in two channels containing a constriction. The dark line across each channel is a meniscus separating a water-filled region (right part) from an air-filled region (left part). The geometrical dimensions of the channel are: constriction length 1 mm, constriction width 30 µm, exit channel length 5.5 mm, exit channel width 330 µm for the top channel, and 390 µm for the bottom channel.

Download Keiser et al. Supplementary Movie 1(Video)
Video 9.7 MB

Keiser et al. Supplementary Movie 2

Zoom of the jump and subsequent relaxation of the meniscus from the constriction exit to the exit channel.

Download Keiser et al. Supplementary Movie 2(Video)
Video 1.1 MB