Hostname: page-component-78c5997874-m6dg7 Total loading time: 0 Render date: 2024-11-03T02:27:45.920Z Has data issue: false hasContentIssue false

Interaction between two spherical bubbles rising in a viscous liquid

Published online by Cambridge University Press:  02 March 2011

YANNICK HALLEZ
Affiliation:
Université de Toulouse, INPT, UPS, LGC (Laboratoire de Génie Chimique), 118 route de Narbonne, F-31062 Toulouse CEDEX 9, France
DOMINIQUE LEGENDRE*
Affiliation:
Université de Toulouse, INPT, UPS, IMFT (Institut de Mécanique des Fluides de Toulouse), Allée Camille Soula, F-31400 Toulouse, France CNRS, IMFT, F-31400 Toulouse, France
*
Email address for correspondence: [email protected]

Abstract

The three-dimensional flow around two spherical bubbles moving in a viscous fluid is studied numerically by solving the full Navier–Stokes equations. The study considers the interaction between two bubbles for moderate Reynolds numbers (50 ≤ Re ≤ 500, Re being based on the bubble diameter) and for positions described by the separation S (2.5 ≤ S ≤ 10, S being the distance between the bubble centres normalised by the bubble radius) and the angle θ (0° ≤ θ ≤ 90°) formed between the centreline and the direction perpendicular to the direction of the motion. We provide a general description of the interaction extending the results obtained for two bubbles moving side by side (θ = 0°) by Legendre, Magnaudet & Mougin (J. Fluid Mech., vol. 497, 2003, p. 133) and for two bubbles moving in line (θ = 90°) by Yuan & Prosperetti J. Fluid Mech., vol. 278, 1994, p. 325). Simple models based on physical arguments are given for the drag and lift forces experienced by each bubble. The interaction is the combination of three effects: a potential effect, a viscous correction (Moore's correction) and a significant wake effect observed on both the drag and the transverse forces of the second bubble when located in the wake of the first one.

Type
Papers
Copyright
Copyright © Cambridge University Press 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Adoua, R., Legendre, D. & Magnaudet, J. 2009 Reversal of the lift force on an oblate bubble in a weakly viscous linear shear flow. J. Fluid Mech. 628, 2341.CrossRefGoogle Scholar
Auton, T. R. 1987 The lift force on a spherical body in a rotational flow. J. Fluid Mech. 183, 199218.CrossRefGoogle Scholar
Batchelor, G. K. 1967 An Introduction to Fluid Dynamics. Cambridge University Press.Google Scholar
Biesheuvel, A. & van Wijngaarden, L. 1982 The motion of pair of gas bubbles in a perfect liquid. J. Engng Math. 16, 349365.CrossRefGoogle Scholar
Bunner, B. & Tryggvason, G. 2002 Dynamics of homogeneous bubbly flows. Part 1. Rise velocity and microstructure of the bubbles. J. Fluid Mech. 466, 1752.CrossRefGoogle Scholar
Bunner, B. & Tryggvason, G. 2003 Effect of bubble deformation on the properties of bubbly flows. J. Fluid Mech. 495, 77118.CrossRefGoogle Scholar
Cartellier, A. & Rivière, N. 2001 Bubble-induced agitation and microstructure in uniform bubbly flows at small to moderate particle Reynolds numbers. Phys. Fluids 13 (8), 21652181.CrossRefGoogle Scholar
Clift, R., Grace, J. R. & Weber, M. E. 1978 Bubbles, Drops and Particles. Academic Press.Google Scholar
Endo, D. 1938 The forces on two spheres placed in a uniform flow. Proc. Phys. Math. Soc. Japan 20, 667703.Google Scholar
Esmaeeli, A. & Tryggvason, G. 1998 Direct numerical simulations of bubbly flows. Part 1. Low Reynolds number arrays. J. Fluid Mech. 377, 313345.CrossRefGoogle Scholar
Figueroa-Espinoza, B., Legendre, D. & Zenit, R. 2008 The effect of confinement on the motion of a single clean bubble. J. Fluid Mech. 616, 419443.CrossRefGoogle Scholar
Happel, J. & Brenner, H. 1965 Low Reynolds Number Hydrodynamics. Kluwer.Google Scholar
Harper, J. F. 1970 On bubbles rising in line at large Reynolds number. J. Fluid Mech. 41, 751758.CrossRefGoogle Scholar
Harper, J. F. 1997 Bubbles rising in line: why is the first approximation so bad? J. Fluid Mech. 351, 289300.CrossRefGoogle Scholar
Harper, J. F. 2001 Growing bubbles rising in line. J. Appl. Math. Decis. Sci. 5, 6573.CrossRefGoogle Scholar
Harper, J. F. 2008 Bubbles in line: champagne, lager, cider. In Bubbles in Food 2: Novelty, Health and Luxury (ed. Campbell, G. M., Scanlan, M. G. & Pyle, D. L.), vol. 5, pp. 147153. AACC International.CrossRefGoogle Scholar
Jeffrey, D. 1973 Conduction through a random suspension of spheres. Proc. R. Soc. Lond. A 335, 355367.Google Scholar
Joseph, D. D. 2006 a Potential flow of viscous fluid: historical notes. ntl J. Multiphase Flow 32, 285310.CrossRefGoogle Scholar
Joseph, D. D. 2006 b Addendum (Helmholtz decomposition) to: “Potential flow of viscous fluid: historical notes”. Intl J. Multiphase Flow 32, 886887.CrossRefGoogle Scholar
Joseph, D. D. & Wang, J. 2004 The dissipation approximation and viscous potential flow. J. Fluid Mech. 505, 365377.CrossRefGoogle Scholar
Katz, J. & Meneveau, C. 1996 Wake-induced relative motion of bubbles rising in line. Intl J. Multiphase Flow 22 (2), 239258.CrossRefGoogle Scholar
Kim, I., Elghobashi, S. & Sirignano, W. A. 1993 Three-dimensional flow over two spheres placed side by side. J. Fluid Mech. 246, 465488.CrossRefGoogle Scholar
Kok, J. B. W. 1993 Dynamics of a pair of gas bubbles moving through liquid. Part 1. Theory. Eur. J. Mech. B Fluids 12, 515540.Google Scholar
Lance, M. & Bataille, J. 1991 Turbulence in the liquid phase of a uniform bubbly air–water flow. J. Fluid Mech. 222, 95118.CrossRefGoogle Scholar
Legendre, D. & Magnaudet, J. 1997 A note on the lift force on a spherical bubble or drop in a low-Reynolds-number shear flow. Phys. Fluids 9, 35723574.CrossRefGoogle Scholar
Legendre, D. & Magnaudet, J. 1998 The lift force on a spherical body in a viscous linear shear flow. J. Fluid Mech. 368, 81126.CrossRefGoogle Scholar
Legendre, D., Magnaudet, J. & Mougin, G. 2003 Hydrodynamic interactions between two spherical bubbles rising side by side in a viscous liquid. J. Fluid Mech. 497, 133166.CrossRefGoogle Scholar
Levich, V. G. 1962 Physicochemical Hydrodynamics. Prentice Hall.Google Scholar
Magnaudet, J. & Eames, I. 2000 The motion of high-Reynolds-number bubbles in inhomogeneous flows. Annu. Rev. Fluid Mech. 32, 659708.CrossRefGoogle Scholar
Magnaudet, J. & Mougin, G. 2007 Wake instability of a fixed spheroidal bubble. J. Fluid Mech. 572, 311337.CrossRefGoogle Scholar
Magnaudet, J., Rivero, M. & Fabre, J. 1995 Accelerated flows past a rigid sphere or a spherical bubble. Part 1. Steady straining flow. J. Fluid Mech. 284, 97135.CrossRefGoogle Scholar
Mei, R., Klausner, J. & Lawrence, C. J. 1994 A note on the history force on a spherical bubble at finite Reynolds number. Phys. Fluids A 6, 418420.CrossRefGoogle Scholar
Merle, A., Legendre, D. & Magnaudet, J. 2005 Forces on a high-Re spherical bubble in a turbulent flow. J. Fluid Mech. 532, 5362.CrossRefGoogle Scholar
Moore, D. W. 1963 The boundary layer on a spherical gas bubble. J. Fluid Mech. 16, 161176.CrossRefGoogle Scholar
Riboux, G., Risso, F. & Legendre, D. 2010 Experimental characterization of the agitation generated by bubbles rising at high Reynolds number. J. Fluid Mech. 643, 509539.CrossRefGoogle Scholar
Roig, V. & Larue de Tournemine, A. 2007 Measurement of interstitial velocity of homogeneous bubbly flows at low to moderate void fraction. J. Fluid Mech. 572, 87110.CrossRefGoogle Scholar
Sanada, T., Watanabe, M., Fukano, T. & Kariyasaki, A. 2005 Behavior of a single coherent gas bubble chain and surrounding liquid jet flow structure. Chem. Engng Sci. 60, 48864900.CrossRefGoogle Scholar
Sangani, A. S. & Didwania, A. K. 1993 Dynamic simulations of flows of bubbly liquids at large Reynolds number. J. Fluid Mech. 250, 307337.CrossRefGoogle Scholar
Smereka, P. 1993 On the motion of bubbles in a periodic box. J. Fluid Mech. 254, 79112.CrossRefGoogle Scholar
Takagi, S., Ogasawara, T. & Matsumoto, Y. 2008 The effects of surfactant on the multiscale structure of bubbly flows. Trans. R. Soc. A 366, 21172129.Google ScholarPubMed
Voinov, O. V. & Golovin, A. M. 1970 Lagrange equations for a system of bubbles of varying radii in a liquid of small viscosity. Fluid Dyn. 5, 458464.CrossRefGoogle Scholar
van Wijngaarden, L. 1976 Hydrodynamic interaction between gas bubbles in liquid. J. Fluid Mech. 77, 2744.CrossRefGoogle Scholar
Yuan, H. & Prosperetti, A. 1994 On the in-line motion of two spherical bubbles in a viscous fluid. J. Fluid Mech. 278, 325349.CrossRefGoogle Scholar
Yurkovetsky, Y. & Brady, J. F. 1996 Statistical mechanics of bubbly liquids. Phys. Fluids 8 (4), 881895.CrossRefGoogle Scholar
Zenit, R., Koch, D. L. & Sangani, A. S. 2001 Measurements of the average properties of a suspension of bubbles rising in a vertical channel. J. Fluid Mech. 429, 307342.CrossRefGoogle Scholar