Hostname: page-component-78c5997874-ndw9j Total loading time: 0 Render date: 2024-11-08T07:53:43.475Z Has data issue: false hasContentIssue false

The instability and breakdown of tall columnar vortices in a quasi-geostrophic fluid

Published online by Cambridge University Press:  26 April 2006

David G. Dritschel
Affiliation:
Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Silver Street, Cambridge CB3 9EW, UK
Manuel De La Torre JuáRez
Affiliation:
Departamento de Física Aplicada a la Ingeniería Aeronáutica, Universidad Politécnica de Madrid, Pza. Cardenal Cisneros 3, 28040 Madrid, Spain

Abstract

We examine the linear stability of elliptical columns of uniform potential vorticity subject to two-dimensional (horizontal) straining within a rapidly rotating, stratified (quasi-geostrophic) fluid. We find that horizontal straining can promote the exponential growth of three-dimensional disturbances when the vortex height-to-width aspect ratio exceeds, qualitatively, three times the ratio of the Coriolis parameter to the buoyancy frequency. This instability is not related to the usual baroclinic instability which operates on shallow vortex columns whose potential vorticity changes sign with height. The nonlinear development of these instabilities is investigated numerically using a high-resolution contour surgery algorithm. Simulations are conducted for both a Boussinesq (ocean-like) fluid and a compressible (atmospheric-like) fluid having exponentially decreasing density with height. The simulations reveal a generic nonlinear development that results in a semi-ellipsoidal baroclinic vortex dome at the lower surface and, in the case of a Boussinesq fluid, another such dome at the upper surface.

The related problem of two interacting vortex columns is also examined. A generic three-dimensional instability and nonlinear development occurs no matter how great the distance between the vortex columns, provided that they are sufficiently tall.

Our results may bear upon the observed structure of many atmospheric and oceanic vortices, whose height-to-width aspect ratios are consistent with our findings. Remarkably, even strongly ageostrophic vortices, such as tropical cyclones, fit the pattern. Our results furthermore re-open questions about the long-time nature of freely decaying quasi-geostrophic turbulence, for which recent simulations indicate a progressive two-dimensionalization by vortex alignment, while earlier simulations have indicated long-lived baroclinic vortices, not unlike what we find here.

Type
Research Article
Copyright
© 1996 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bayly, B. J., Holm, D. D. & Lifschitz, A. 1995 Three-dimensional stability of elliptical vortex columns in external strain flows. Phil. Trans. R. Soc. Lond. A 354, 895926.Google Scholar
Dritschel, D. G. 1986 The nonlinear evolution of rotating configurations of uniform vorticity. J. Fluid Mech. 172, 157182.Google Scholar
Dritschel, D. G. 1988 Nonlinear stability bounds for inviscid, two-dimensional parallel or circular flows with monotonic vorticity, and the analogous three-dimensional quasi-geostrophic flows. J. Fluid Mech. 191, 511547.CrossRefGoogle Scholar
Dritschel, D. G. 1989 Contour dynamics and contour surgery: numerical algorithms for extended, high-resolution modelling of vortex dynamics in two-dimensional, inviscid, incompressible flows. Comput. Phys. Rep. 10, 77146.CrossRefGoogle Scholar
Dritschel, D. G. 1990 The stability of elliptical vortices in an external straining flow. J. Fluid. Mech. 210, 223261.Google Scholar
Dritschel, D. G. 1993 Vortex properties of two-dimensional turbulence. Phys. Fluids A 5, 984997.Google Scholar
Dritschel, D. G. 1995 A general theory for two-dimensional vortex interactions. J. Fluid Mech. 293, 269303.Google Scholar
Dritschel, D. G. & Ambaum, M. H. P. 1996 A contour-advective semi-Lagrangian numerical algorithm for simulating fine-scale conservative dynamical fields. Q. J. R. Met. Soc. (in press).Google Scholar
Dritschel, D. G. & Saravanan, R. 1994 Three-dimensional quasi-geostrophic contour dynamics, with an application to stratospheric vortex dynamics. Q. J. R. Met. Soc. 120, 12671297.Google Scholar
Dritschel, D. G. & Waugh, D. W. 1992 Quantification of the inelastic interaction of two asymmetric vortices in two-dimensional vortex dynamics. Phys. Fluids A 4, 17371744.Google Scholar
Hoskins, B. J., McIntyre, M. E. & Robertson, A. W. 1985 On the use and significance of isentropic potential-vorticity maps. Q. J. R. Met. Soc. 111, 877946.Google Scholar
Houghton, J. T. 1986 The Physics of Atmospheres, 2nd Edn. Cambridge University Press.
Hua, B. L. & Haidvogel, D. B. 1986 Numerical simulations of the vertical structure of quasi-geostrophic turbulence. J. Atmos. Sci. 43, 29232936.Google Scholar
Kida, S. 1981 Motion of an elliptical vortex in a uniform shear flow. J. Phys. Soc. Japan 50, 35173520.Google Scholar
Kirchhoff, G. 1876 In Vorlesungen über mathematische Physik. Leipzig: Mechanik.
Legras, B. & Dritschel, D. G. 1991 The elliptical model of two-dimensional vortex dynamics. Part I: the basic state. Phys. Fluids A 3, 845854.Google Scholar
Legras, B. & Dritschel, D. G. 1993 Vortex stripping and the generation of high vorticity gradients in two-dimensional flows. Appl. Sci. Res. 51, 445455.Google Scholar
Love, A. E. H. 1893 On the stability of certain vortex motions. Proc. Lond. Math. Soc. 35, 18.Google Scholar
Mariotti, A., Legras, B. & Dritschel, D. G. 1994 Vortex stripping and the erosion of coherent structures in two-dimensional flows. Phys. Fluids 6, 39543962.Google Scholar
McIntyre, M. E. 1995 The stratospheric polar vortex and sub-vortex: fluid dynamics and midlatitude ozone loss. Phil. Trans. R. Soc. Lond. 352, 227240.Google Scholar
McWilliams, J. C. 1989 Statistical properties of decaying geostrophic turbulence. J. Fluid Mech. 198, 199230.Google Scholar
McWilliams, J. C. 1990 The vortices of geostrophic turbulence. J. Fluid Mech. 219, 387404.Google Scholar
McWilliams, J. C., Weiss, J. B. & Yavneh, I. 1994 Anisotropy and coherent vortex structures in planetary turbulence. Science 264, 410413.Google Scholar
Meacham, S. P. 1992 Quasi-geostrophic, ellipsoidal vortices in a stratified fluid. Dyn. Atmos. Oceans 16, 189223.Google Scholar
Melander, M. V., Zabusky, N. J. & Styczek, A. S. 1986 A moment model for vortex interactions of the two-dimensional Euler equations. Part 1. Computational validation of a Hamiltonian elliptical representation. J. Fluid Mech. 167, 95115.CrossRefGoogle Scholar
Miyazaki, T. & Hanazaki, H. 1994 Baroclinic instability of Kirchhoff's elliptic vortex. J. Fluid Mech. 261, 253271.Google Scholar
Miyazaki, T., Imai, T. & Fukumoto, Y. 1995 Three-dimensional instability of Kirchhoff's elliptic vortex. Phys. Fluids 7, 195202.Google Scholar
Moore, D. W. & Saffman, P. G. 1971 Structure of a line vortex in an imposed strain. In Aircraft Wake Turbulence (ed. J. H. Olsen, A. Goldburg & M. Rogers). Plenum.
Pedlosky, J. 1979 Geophysical Fluid Dynamics, 2nd Edn. Springer.
Polvani, L. M. 1991 Two-layer geostrophic vortex dynamics. Part 2. Alignment and two-layer V-states. J. Fluid Mech. 225, 241270.Google Scholar
Polvani, L. M., Flierl, G. R. & Zabusky, N. J. 1989 Two-layer geostrophic vortex dynamics. Part 1. Upper-layer V-states and merging. J. Fluid Mech. 205, 215242.Google Scholar
Rhines, P. B. 1979 Geostrophic turbulence. Ann. Rev. Fluid Mech. 11, 401441.Google Scholar
Shapiro, L. J. & Franklin, J. L. 1994 Potential vorticity in hurricane Gloria. Mon. Wea. Rev. 123, 14651475.Google Scholar
Stegner, A. & Zeitlin, V. 1995 What can asymptotic expansions tell us about large-scale quasi-geostrophic anticyclonic vortices? Nonlinear Processes in Geophys. 2, 186.Google Scholar
Sutyrin, G. G., Hesthaven, J. S., Lynov, J. P. & Rasmussen, J. J. 1994 Dynamical properties of vortical structures on the beta-plane. J. Fluid Mech. 268, 103131.Google Scholar
Viera, F. 1995 On the alignment and axisymmetrization of a vertically tilted geostrophic vortex. J. Fluid Mech. 289, 2950.Google Scholar
Wang, Y. & Holland, G. J. 1995 On the interaction of tropical-cyclone-scale vortices. IV: Baroclinic vortices. Q. J. R. Met. Soc. 121, 95126.Google Scholar