Hostname: page-component-78c5997874-mlc7c Total loading time: 0 Render date: 2024-11-06T09:04:26.106Z Has data issue: false hasContentIssue false

Instabilities of the upstream meniscus in directional viscous fingering

Published online by Cambridge University Press:  26 April 2006

Sylvain Michalland
Affiliation:
Laboratoire de Physique Statistique de l'Ecole Normale Supérieure, 24 rue Lhomond, 75231 Paris Cedex 05, France Present Address: MFPM, Place des Carmes Déchaux, 63040 Clermont-Ferrand Cedex, France.
Marc Rabaud
Affiliation:
Laboratoire de Physique Statistique de l'Ecole Normale Supérieure, 24 rue Lhomond, 75231 Paris Cedex 05, France Present Address: FAST, Bt. 502, 91405 Orsay Cedex, France (to where correspondence should be addressed).
Yves Couder
Affiliation:
Laboratoire de Physique Statistique de l'Ecole Normale Supérieure, 24 rue Lhomond, 75231 Paris Cedex 05, France

Abstract

New instabilities affecting the meniscus of a viscous fluid are presented. They occur in an experimental set-up introduced previously by Rabaud et al. (1990) in which a small quantity of a viscous fluid is placed in the narrow gap between two rotating cylinders. In this geometry the downstream meniscus located in the region where the two solid surfaces move away from each other is known to be unstable and to exhibit directional viscous fingering. In the present article it is shown that the upstream meniscus can also be unstable. Two types of instabilities are observed. In the first supercritical transition the front becomes time-dependent with either standing or propagating waves. In a second transition, which is subcritical, parallel fingers of finite amplitude are formed. The various types of spatio-temporal dynamical behaviour are discussed.

Type
Research Article
Copyright
© 1996 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Brattkus, K. 1989 Capillary instabilities in deep cells during directional solidification. J. Phys. Paris 50, 29993006.Google Scholar
Bretherton, F. P. 1961 The motion of long bubbles in tubes. J. Fluid Mech. 10, 166188.Google Scholar
Coullet, P. & Iooss, G. 1990 Instabilities of one-dimensional cellular patterns. Phys. Rev. Lett. 64, 866869.Google Scholar
Cross, M. C. & Hohenberg, P. C. 1993 Pattern formation outside equilibrium. Rev. Mod. Phys. 65, 8511112.Google Scholar
Cummins, H. Z., Fourtune, L. & Rabaud, M. 1993 Successive bifurcations in directional viscous fingering. Phys. Rev. E 47, 17271738.Google Scholar
Daviaud, F., Bonnetti, M. & Dubois, M. 1990 Transition to turbulence via spatiotemporal intermittency in one-dimensional Rayleigh-Bénard convection. Phys. Rev. A 42, 33883399.Google Scholar
Decré, M. 1994 Etude expérimental des comportements de l'interface dans l'enduisage par rouleaux. Thése de l'Université Paris VI.
Douady, S., Fauve, S. & Thual, O. 1989 Oscillatory phase modulation of parametrically forced surface waves. Europhys. Lett. 10, 309315.Google Scholar
Faivre, G., Cheveigné, S de, Guthmann, C. & Kurowski, P. 1989 Solitary tilt waves in thin lamellar eutectics. Europhys. Lett. 9, 779784.Google Scholar
Flesselles, J.-M., Simon, A. J. & Libchaber, A. J. 1991 Dynamics of one-dimensional interfaces: an experimentalist's view. Adv. Phys. 40, 151.Google Scholar
Askell, P.H., Savage, M. D., Summers, J. L. & Thompson, H. M. 1995 Modelling and analysis of meniscus coating. J. Fluid Mech. 298, 113137.Google Scholar
Goedde, E. F. & Yuen, M. C. 1970 Experiments on liquid jet instability. J. Fluid Mech. 40, 495511.Google Scholar
Hakim, V., Rabaud, M., Thomé, H. & Couder, Y. 1990 Directional growth in viscous fingering. In New trends in Nonlinear Dynamics and Pattern Forming Phenomena (ed.P. Coullet & P. Huerre), pp. 327337. Plenum.
Jackson, K. A. & Hunt, J. D. 1965 Transparent compounds that freeze like metals. Acta Metall. 13, 12121215.Google Scholar
Kurowski, P., Cheveigné, S de, Faivre, G. & Guthmann, C. 1989 Cusp instability in cellular growth. J. Phys. Paris 50, 30073019.Google Scholar
Kurowski, P., Cheveigné, S de & Guthmann, C. 1990 Shapes, wavelength-selection, and the cellular-dendritic “transition” in directional solidification. Phys. Rev. A 42, 73687376.Google Scholar
Limat, L., Jenffer, P., Dagens, B., Touron, E., Fermigier, M. & Wesfreid, J. E. 1992 Gravitational instabilities of thin liquid layers: dynamics of pattern selection. Physica D61, 166182.Google Scholar
Melo, F. & Douady, S. 1993 From solitary waves to static patterns via spatiotemporal intermittency. Phys. Rev. Lett. 71, 32833286.Google Scholar
Michalland, S. 1992 Etude des différents régimes dynamiques de l'instabilité de l'imprimeur. Thèse de l'Université Paris VI.
Michalland, S., Rabaud, M. & Couder, Y. 1993 Transition to chaos by spatio-temporal intermittency in directional viscous fingering. Europhys. Lett. 22, 1722.Google Scholar
Moffatt, H. K. 1977 Behaviour of a viscous film on the outer surface of a rotating cylinder. J. Méc. 16, 651673.Google Scholar
Oswald, P., Bechhoeffer, J. & Libchaber, A. 1987 Instabilities of a moving nematic-isotropic interface. Phys. Rev. Lett. 58, 23182321.Google Scholar
Pan, L. & de Bruyn, J. R. 1993 Spatially uniform travelling cellular patterns at a driven interface. Phys. Rev. E 49, 483493.Google Scholar
Rabaud, M., Couder, Y. & Michalland, S. 1991 Wavelength selection and transients in the one-dimensional array of cells of the printer's instability. Euro. J. Mech. B/Fluids 10, 253260.Google Scholar
Rabaud, M., Michalland, S. & Couder, Y. 1990 Dynamical regimes of directional viscous fingering: spatiotemporal chaos and wave propagation. Phys. Rev. Lett. 64, 184187.Google Scholar
Rayleigh, Lord 1945 Hydrodynamics (6th edn). Dover.
Reinelt, D. A. 1995 The primary and the inverse instabilities of directional viscous fingering. J. Fluid Mech. 285, 303327.Google Scholar
Saffman, P. G. & Taylor, G. I. 1958 The penetration of a fluid into a porous medium or Hele-Shaw cell containing a more viscous liquid. Proc. R. Soc. Lond. A 245, 312329.Google Scholar
Savage, M. D. 1977 Cavitation in lubrication. Part 1. On boundary conditions and cavity-fluid interfaces. J. Fluid Mech. 80, 743755.Google Scholar
Simon, A. J. & Libchaber, A. 1990 Moving interface: the stability tongue and phenomena within Phys. Rev. A 41, 70907093.
Taylor, G. I. 1963 Cavitation of a viscous fluid in narrow passages. J. Fluid Mech. 16, 595619.Google Scholar
Valette, D. P., Edwards, W. S. & Gollub, J. P. 1994 Transition to spatiotemporal chaos via spatially subharmonic oscillations of a periodic front. Phys. Rev. E 49, R4783–R4786.Google Scholar