Hostname: page-component-78c5997874-94fs2 Total loading time: 0 Render date: 2024-11-16T15:22:04.582Z Has data issue: false hasContentIssue false

The influence of porous-medium microstructure on filtration

Published online by Cambridge University Press:  27 December 2018

G. Printsypar
Affiliation:
Mathematical Institute, University of Oxford, Oxford OX2 6GG, UK
M. Bruna
Affiliation:
Mathematical Institute, University of Oxford, Oxford OX2 6GG, UK
I. M. Griffiths*
Affiliation:
Mathematical Institute, University of Oxford, Oxford OX2 6GG, UK
*
Email address for correspondence: [email protected]

Abstract

We investigate how a filter-medium microstructure influences filtration performance. We derive a theory that generalizes classical multiscale models for regular structures to account for filter media with more realistic microstructures, comprising random microstructures with polydisperse unidirectional fibres. Our multiscale model accounts for the fluid flow and contaminant transport at the microscale (over which the medium structure is fully resolved) and allows us to obtain macroscopic properties such as the effective permeability, diffusivity and fibre surface area. As the fibres grow due to contaminant adsorption, this leads to contact of neighbouring fibres. We propose an agglomeration algorithm that describes the resulting behaviour of the fibres upon contact, allowing us to explore the subsequent time evolution of the filter medium in a simple and robust way. We perform a comprehensive investigation of the influence of the filter-medium microstructure on filter performance in a spectrum of possible filtration scenarios.

Type
JFM Papers
Copyright
© 2018 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Allaire, G., Brizzi, R., Dufrêche, J. F., Mikelić, A. & Piatnitski, A. 2014 Ion transport in porous media: derivation of the macroscopic equations using up-scaling and properties of the effective coefficients. Physica D 282, 3960.Google Scholar
Alnæs, M. S., Blechta, J., Hake, J., Johansson, A., Kehlet, B., Logg, A., Richardson, C., Ring, J., Rognes, M. E. & Wells, G. N. 2015 The FEniCS project version 1.5. Archive Numer. Softw. 3 (100), 923.Google Scholar
Baret, J.F 1969 Theoretical model for an interface allowing a kinetic study of adsorption. J. Colloid Interface Sci. 30 (1), 112.Google Scholar
Baron, P. A. & Willeke, K. 2001 Aerosol Measurement: Principles, Techniques, and Applications. John Wiley.Google Scholar
Becker, J., Wiegmann, A., Hahn, F. J. & Lehmann, M. J. 2013 Improved modeling of filter efficiency in life-time simulations on fibrous media. In Filtech Proceedings, Wiesbaden, Germany.Google Scholar
Brown, R. C. 1993 Air Filtration. An Integrated Approach to the Theory and Applications of Fibrous Filters. Elsevier Science.Google Scholar
Chen, G., Song, W., Qi, B., Li, J., Ghosh, R. & Wan, Y. 2015 Separation of protein mixtures by an integrated electro-ultrafiltration–electrodialysis process. Sep. Purif. Technol. 147, 3243.Google Scholar
Dalwadi, M. P., Bruna, M. & Griffiths, I. M. 2016 A multiscale model to calculate filter blockage. J. Fluid Mech. 809, 264289.Google Scholar
Dalwadi, M. P., Griffiths, I. M. & Bruna, M. 2015 Understanding how porosity gradients can make a better filter using homogenization theory. Proc. R. Soc. Lond. A 471, 20150464.Google Scholar
Dalwadi, M. P., O’Kiely, D., Thomson, S. J., Khaleque, T. S. & Hall, C. L. 2017 Mathematical modeling of chemical agent removal by reaction with an immiscible cleanser. SIAM J. Appl. Maths 77 (6), 19371961.Google Scholar
Das, A., Alagirusamy, R. & Rajan Nagendra, K. 2009 Filtration characteristics of spun-laid nonwoven fabrics. Indian J. Fibre Text. Res. 34, 253257.Google Scholar
Fisk, W. J., Faulkner, D., Palonen, J. & Seppanen, O. 2002 Performance and costs of particle air filtration technologies. Indoor Air 12, 223234.Google Scholar
Fotovati, S., Tafreshi, H. V. & Pourdeyhimi, B. 2010 Influence of fibre orientation distribution on performance of aerosol filtration media. Chem. Engng Sci. 65, 52855293.Google Scholar
Geuzaine, C. & Remacle, J. F. 2009 GMSH: a three-dimensional finite element mesh generator with built-in pre- and post-processing facilities. Intl J. Numer. Meth. Engng 79 (11), 13091331.Google Scholar
Goldrick, S., Joseph, A., Mollet, M., Turner, R., Gruber, D., Farid, S. S. & Titchener-Hooker, N. J. 2017 Predicting performance of constant flow depth filtration using constant pressure filtration data. J. Membr. Sci. 531, 138147.Google Scholar
Hornung, U.(Ed.) 1996 Homogenization and Porous Media. Springer.Google Scholar
Hutten, I. M. 2015 Handbook of Nonwoven Filter Media, 2nd edn. Elsevier Science.Google Scholar
Iliev, O., Lakdawala, Z., Nessler, K. H. L., Prill, T., Vutov, Y., Yang, Y. & Yao, J. 2017 On the pore-scale modeling and simulation of reactive transport in 3D geometries. Math. Model. Anal. 22 (5), 671694.Google Scholar
Iliev, O., Lakdawala, Z. & Printsypar, G. 2014 On a multiscale approach for filter efficiency simulations. J. Comput. Math. Appl. 67, 21712184.Google Scholar
Krupp, A. U., Please, C. P., Kumar, A. & Griffiths, I. M. 2017 Scaling-up of multi-capsule depth filtration systems by modeling flow and pressure distribution. Sep. Purif. Technol. 172, 350356.Google Scholar
Lakdawala, Z.2010 On efficient algorithms for filtration related multiscale problems. PhD thesis, Technical University Kaiserslautern.Google Scholar
Li, W., Shen, S. & Li, H. 2016 Study and optimization of the filtration performance of multi-fiber filter. Adv. Powder Technol. 27, 638645.Google Scholar
Manikantan, R. & Gunasekaran, E. J. 2013 Modeling and analysing of air filter in air intake system in automobile engine. Adv. Mech. Engng 5, 654396.Google Scholar
Math2Market GmbH 2011 GeoDict – the digital material laboratory. https://www.math2market.com.Google Scholar
Neunzert, H. & Prätzel-Wolters, D. 2015 Modeling and simulation of filtration processes. In Currents in Industrial Mathematics, From Concepts to Research to Education, pp. 163228. Springer.Google Scholar
Ray, N., Elbinger, T. & Knabner, P. 2015 Upscaling the flow and transport in an evolving porous media with general interaction potentials. SIAM J. Appl. Maths 75 (5), 21702192.Google Scholar
Robinson, M. & Bruna, M. 2015 Particle-based and meshless methods with Aboria. SoftwareX 6, 172178.Google Scholar
Sambaer, W., Zatloukal, M. & Kimmer, D. 2012 3D air filtration modeling for nanofiber based filters in the ultrafine particle size range. Chem. Engng Sci. 82, 299311.Google Scholar
Schmuck, M. & Bazant, M. Z. 2015 Ion transport in porous media: derivation of the macroscopic equations using up-scaling and properties of the effective coefficients. SIAM J. Appl. Maths 75 (3), 13691401.Google Scholar
Voorhees, P. W. 1985 The theory of Ostwald ripening. J. Stat. Phys. 38 (1–2), 231252.Google Scholar