Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-10T05:53:13.419Z Has data issue: false hasContentIssue false

Influence of liquid miscibility and wettability on the structures produced by drop–jet collisions

Published online by Cambridge University Press:  27 December 2019

David Baumgartner
Affiliation:
Institute of Fluid Mechanics and Heat Transfer, Graz University of Technology, 8010 Graz, Austria
Ronan Bernard
Affiliation:
Institute of Aerospace Thermodynamics, University of Stuttgart, 70569 Stuttgart, Germany
Bernhard Weigand
Affiliation:
Institute of Aerospace Thermodynamics, University of Stuttgart, 70569 Stuttgart, Germany
Grazia Lamanna
Affiliation:
Institute of Aerospace Thermodynamics, University of Stuttgart, 70569 Stuttgart, Germany
Günter Brenn
Affiliation:
Institute of Fluid Mechanics and Heat Transfer, Graz University of Technology, 8010 Graz, Austria
Carole Planchette*
Affiliation:
Institute of Fluid Mechanics and Heat Transfer, Graz University of Technology, 8010 Graz, Austria
*
Email address for correspondence: [email protected]

Abstract

Collisions between a stream of drops and a continuous jet of a different liquid are experimentally investigated. In contrast to previous studies, our work focuses on the effects of liquid miscibility and wettability on the collision outcomes. Thus, miscible and immiscible liquids providing total and partial wetting are used. We show that, as long as the jet surface tension is smaller than the drop surface tension, the drops can be encapsulated by the jet, providing the so-called drops-in-jet structure. The transitions between the different regimes remain similar in nature with a capillary fragmentation responsible for the jet break-up and an inertial fragmentation causing the drops (and then possibly the jet) to break up. The dimensionless numbers proposed in the literature to model the inertial fragmentation thresholds do not bring the results obtained with different liquids at the same critical value. We explain the reason via a detailed analysis of the collisions, accounting for the drop and jet extensions and their kinetics. The drop fragmentation is found to occur during the recoil phase, leading us to propose a new dimensionless parameter that successfully reproduced all our experimental data obtained with immiscible liquids. Finally, we demonstrate that the most dramatic change of the collision outcomes is produced by using drops that totally wet the jet. In this case, the encapsulation of the drops cannot be achieved, constituting a true limit to some applications based on the solidification of the drops-in-jet structure.

Type
JFM Papers
Copyright
© 2019 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bazhlekov, I. B. & Shopov, P. J. 1997 Numerical simulation of dynamic contact-line problems. J. Fluid Mech. 352, 113133.CrossRefGoogle Scholar
Berberović, E., van Hinsberg, N. P., Jakirlić, S., Roisman, I. V. & Tropea, C. 2009 Drop impact onto a liquid layer of finite thickness: dynamics of the cavity evolution. Phys. Rev. E 79, 036306.Google ScholarPubMed
Bird, J. C., Dhiman, R., Kwon, H.-M. & Varanasi, K. K. 2013 Reducing the contact time of a bouncing drop. Nature 503, 385388.CrossRefGoogle ScholarPubMed
Blanchette, F., Messio, L. & Bush, J. 2009 The influence of surface tension gradients on drop coalescence. Phys. Fluids 21, 072107.CrossRefGoogle Scholar
Brandenberger, H. & Widmer, F. 1998 A new multinozzle encapsulation/immobilisation system to produce uniform beads of alginate. J. Biotechnol. 63 (1), 7380.CrossRefGoogle Scholar
Brenn, G., Durst, F. & Tropea, C. 1996 Monodisperse sprays for various purposes – their production and characteristics. Part. Part. Syst. Charact. 13, 179185.CrossRefGoogle Scholar
Chen, N., Chen, H. & Amirfazli, A. 2017 Drop impact onto a thin film: miscibility effect. Phys. Fluids 29, 092106.CrossRefGoogle Scholar
Chen, R.-H., Chiu, S.-L. & Lin, T.-H. 2006 Collisions of a string of water drops on a water jet of equal diameter. Exp. Therm. Fluid Sci. 31, 7581.CrossRefGoogle Scholar
Christen, D. S. 2010 Praxiswissen der chemischen Verfahrenstechnik, 2nd edn. Springer.CrossRefGoogle Scholar
Chu, L.-Y., Utada, A. S., Shah, R. K., Kim, J.-W. & Weitz, D. A. 2007 Controllable monodisperse multiple emulsions. Angew. Chem. 46 (47), 89708974.CrossRefGoogle ScholarPubMed
Cossali, G. E., Coghe, A. & Marengo, M. 1997 The impact of a single drop on a wetted solid surface. Exp. Fluids 22 (6), 463472.CrossRefGoogle Scholar
Dai, M. & Schmidt, D. P. 2005 Numerical simulation of head-on droplet collision: effect of viscosity on maximum deformation. Phys. Fluids 17, 041701.CrossRefGoogle Scholar
De Gennes, P. G., Brochard-Wyart, F. & Quere, D. 2004 Capillarity and Wetting Phenomena: Drops, Bubbles, Pearls, Waves. Springer Science.CrossRefGoogle Scholar
Deng, N.-N., Wang, W., Ju, X.-J., Xie, R., Weitz, D. A. & Chu, L.-Y. 2013 Wetting-induced formation of controllable monodisperse multiple emulsions in microfluidics. Lab on a Chip 13, 40474052.CrossRefGoogle ScholarPubMed
Deng, N.-N., Wang, W., Ju, X.-J., Xie, R., Weitz, D. A. & Chu, L.-Y. 2014 Reply to the ‘Comment on “Wetting-induced formation of controllable monodisperse multiple emulsions in microfluidics”’. Lab on a Chip 14, 14791480.CrossRefGoogle Scholar
Einstein, A. 1956 Investigations on the Theory of the Brownian Movement. Dover.Google Scholar
Gao, T.-C., Chen, R.-H., Pu, J.-Y. & Lin, T.-H. 2005 Collision between an ethanol drop and a water drop. Exp. Fluids 38 (6), 731738.CrossRefGoogle Scholar
Georgiev, M. T., Danov, K. D., Kralchevsky, P. A., Gurkov, T. D., Krusteva, D. P., Arnaudov, L. N., Stoyanov, S. D. & Pelan, E. G. 2018 Rheology of particle/water/oil three-phase dispersions: electrostatic versus capillary bridge forces. J. Colloid Interface Sci. 513, 515526.CrossRefGoogle Scholar
Geppert, A., Terzis, A., Lamanna, G., Marengo, M. & Weigand, B. 2017 A benchmark study for the crown-type splashing dynamics of one- and two-component droplet wall–film interactions. Exp. Fluids 58, 127.CrossRefGoogle Scholar
Gotaas, C., Havelka, P., Jakobsen, H. A., Svendsen, H. F., Hase, M., Roth, N. & Weigand, B. 2007 Effect of viscosity on droplet–droplet collision outcome: experimental study and numerical comparison. Phys. Fluids 19 (10), 102106.CrossRefGoogle Scholar
Guzowski, J. & Garstecki, P. 2014 Comment on “Wetting-induced formation of controllable monodisperse multiple emulsions in microfluidics”. Lab on a Chip 14, 14771478.CrossRefGoogle Scholar
Haeberle, S., Naegele, L., Burger, R., von Stetten, F., Zengerle, R. & Ducrée, J. 2008 Alginate bead fabrication and encapsulation of living cells under centrifugally induced artificial gravity conditions. J. Microencapsul. 25 (4), 267274.CrossRefGoogle ScholarPubMed
Hinterbichler, H., Planchette, C. & Brenn, G. 2015 Ternary drop collisions. Exp. Fluids 56, 190.CrossRefGoogle Scholar
Hoath, S. D., Jung, S. & Hutchings, I. M. 2013 A simple criterion for filament break-up in drop-on-demand inkjet printing. Phys. Fluids 25 (2), 021701.CrossRefGoogle Scholar
Hoepffner, J. & Paré, G. 2013 Recoil of a liquid filament: escape from pinch-off through creation of a vortex ring. J. Fluid Mech. 734, 183197.CrossRefGoogle Scholar
Jiang, Y. J., Umemura, A. & Law, C. K. 1992 An experimental investigation in the collision behaviour of hydrocarbon droplets. J. Fluid Mech. 234, 171190.CrossRefGoogle Scholar
Josserand, C. & Thoroddsen, S. T. 2016 Drop impact on a solid surface. Annu. Rev. Fluid Mech. 48, 365391.CrossRefGoogle Scholar
Josserand, C. & Zaleski, S. 2003 Droplet splashing on a thin liquid film. Phys. Fluids 15 (6), 16501657.CrossRefGoogle Scholar
Kadota, T. & Yamasaki, H. 2002 Recent advances in the combustion of water fuel emulsion. Prog. Energy Combust. Sci. 28 (5), 385404.CrossRefGoogle Scholar
Kamperman, T., Trikalitis, V. D., Karperien, M., Visser, C. W. & Leijten, J. 2018 Ultrahigh-throughput production of monodisperse and multifunctional Janus microparticles using in-air microfluidics. ACS Appl. Mater. Interfaces 10 (28), 2343323438.CrossRefGoogle ScholarPubMed
Kavehpour, H. P. 2015 Coalescence of drops. Annu. Rev. Fluid Mech. 47 (1), 245268.CrossRefGoogle Scholar
Khademhosseini, A., Langer, R., Borenstein, J. & Vacanti, J. P. 2006 Microscale technologies for tissue engineering and biology. Proc. Natl Acad. Sci. USA 103 (8), 24802487.CrossRefGoogle ScholarPubMed
Kittel, H. M., Roisman, I. V. & Tropea, C. 2018 Splash of a drop impacting onto a solid substrate wetted by a thin film of another liquid. Phys. Rev. Fluids 3, 073601.CrossRefGoogle Scholar
Lhuissier, H., Sun, C., Prosperetti, A. & Lohse, D. 2013 Drop fragmentation at impact onto a bath of an immiscible liquid. Phys. Rev. Lett. 110, 264503.CrossRefGoogle ScholarPubMed
Liu, H.-R., Zhang, C.-Y., Gao, P., Lu, X.-Y. & Ding, H. 2018 On the maximal spreading of impacting compound drops. J. Fluid Mech. 854, R6.CrossRefGoogle Scholar
Lunkad, S. F., Buwa, V. V. & Nigam, K. D. P. 2007 Numerical simulations of drop impact and spreading on horizontal and inclined surfaces. Chem. Engng Sci. 62 (24), 72147224; 8th International Conference on Gas–Liquid and Gas–Liquid–Solid Reactor Engineering.CrossRefGoogle Scholar
Marangon, F., Hsiao, W. K., Brenn, G. & Planchette, C. 2019 Satellite drop formation during piezo-based inkjet printing. In Proceedings of the 29th Conference on Liquid Atomization and Spray Systems, September 2019, Paris, France. Sorbonne Université.Google Scholar
Martin, G. D., Hoath, S. D. & Hutchings, I. M. 2008 Inkjet printing – the physics of manipulating liquid jets and drops. J. Phys.: Conf. Ser. 105, 012001.Google Scholar
Mazloomi, A., Chikatamarla, S. & Karlin, I. 2016 Simulation of binary droplet collisions with the entropic lattice Boltzmann method. Phys. Fluids 28, 022106.Google Scholar
Okumura, K., Chevy, F., Richard, D., Quéré, D. & Clanet, C. 2003 Water spring: a model for bouncing drops. Eur. Phys. Lett. 62 (2), 237243.CrossRefGoogle Scholar
Planchette, C., Hinterbichler, H. & Brenn, G. 2018a Drop stream – immiscible jet collisions: regimes and fragmentation mechanisms. In Proceedings of the 28th Conference on Liquid Atomization and Spray Systems, 6–8 September 2017, Valencia, Spain, p. 7. Editorial Universitat Politècnica de València.Google Scholar
Planchette, C., Hinterbichler, H., Liu, M., Bothe, D. & Brenn, G. 2017 Colliding drops as coalescing and fragmenting liquid springs. J. Fluid Mech. 814, 277300.CrossRefGoogle Scholar
Planchette, C., Lorenceau, E. & Brenn, G. 2010 Liquid encapsulation by binary collisions of immiscible liquid drops. Colloids Surf. A 365 (1), 8994.CrossRefGoogle Scholar
Planchette, C., Lorenceau, E. & Brenn, G. 2012 The onset of fragmentation in binary liquid drop collisions. J. Fluid Mech. 702, 525.CrossRefGoogle Scholar
Planchette, C., Petit, S., Hinterbichler, H. & Brenn, G. 2018b Collisions of drops with an immiscible liquid jet. Phys. Rev. Fluids 3, 093603.CrossRefGoogle Scholar
Rein, M. 1993 Phenomena of liquid drop impact on solid and liquid surfaces. Fluid Dyn. Res. 12 (2), 6193.CrossRefGoogle Scholar
Richard, D., Clanet, C. & Quéré, D. 2002 Contact time of a bouncing drop. Nature 417, 811.CrossRefGoogle ScholarPubMed
Roisman, I. V. 2004 Dynamics of inertia dominated binary drop collisions. Phys. Fluids 16 (9), 34383449.CrossRefGoogle Scholar
Ross, S. & Becher, P. 1992 The history of the spreading coefficient. J. Colloid Interface Sci. 149 (2), 575579.CrossRefGoogle Scholar
Santiago-Rosanne, M., Vignes-Adler, M. & Velarde, M. G. 2001 On the spreading of partially miscible liquids. J. Colloid Interface Sci. 234 (2), 375383.CrossRefGoogle ScholarPubMed
Schroll, R. D., Josserand, C., Zaleski, S. & Zhang, W. W. 2010 Impact of a viscous liquid drop. Phys. Rev. Lett. 104, 034504.CrossRefGoogle ScholarPubMed
Serp, D., Cantana, E., Heinzen, C., Von Stockar, U. & Marison, I. W. 2000 Characterization of an encapsulation device for the production of monodisperse alginate beads for cell immobilization. Biotechnol. Bioengng 70 (1), 4153.3.0.CO;2-U>CrossRefGoogle ScholarPubMed
Shikhmurzaev, Y. D. 2008 Capillary Flows with Forming Interfaces. CRC Press, Chapman and Hall.Google Scholar
Stone, H. A., Bentley, B. J. & Leal, L. G. 1986 An experimental study of transient effects in the breakup of viscous drops. J. Fluid Mech. 173, 131158.CrossRefGoogle Scholar
Stone, H. A. & Leal, L. G. 1989a The influence of initial deformation on drop breakup in subcritical time-dependent flows at low Reynolds numbers. J. Fluid Mech. 206, 223263.CrossRefGoogle Scholar
Stone, H. A. & Leal, L. G. 1989b Relaxation and breakup of an initially extended drop in an otherwise quiescent fluid. J. Fluid Mech. 198, 399427.CrossRefGoogle Scholar
Sui, Y., Ding, H. & Spelt, P. D. M. 2014 Numerical simulations of flows with moving contact lines. Annu. Rev. Fluid Mech. 46 (1), 97119.CrossRefGoogle Scholar
Takamura, K., Fischer, H. & Morrow, N. R. 2012 Physical properties of aqueous glycerol solutions. J. Petrol. Sci. Engng 98–99, 5060.CrossRefGoogle Scholar
Teh, S.-Y., Lin, R., Hung, L.-H. & Lee, A. P. 2008 Droplet microfluidics. Lab on a Chip 8, 198220.CrossRefGoogle ScholarPubMed
Visser, C. W., Kamperman, T., Karbaat, L. P., Lohse, D. & Karperien, M. 2018 In-air microfluidics enables rapid fabrication of emulsions, suspensions, and 3D modular (bio)materials. Sci. Adv 4 (1), eaao1175.CrossRefGoogle ScholarPubMed
Wang, A.-B. & Chen, C.-C. 2000 Splashing impact of a single drop onto very thin liquid films. Phys. Fluids 12 (9), 21552158.CrossRefGoogle Scholar
Wang, C. H., Lin, C. Z., Hung, W. G., Huang, W. C. & Law, C. K. 2004 On the burning characteristics of collision-generated water/hexadecane droplets. Combust. Sci. Technol. 176 (1), 7196.CrossRefGoogle Scholar
Wildeman, S., Visser, C. W., Sun, C. & Lohse, D. 2016 On the spreading of impacting drops. J. Fluid Mech. 805, 636655.CrossRefGoogle Scholar
Willis, K. D. & Orme, M. 2003 Binary droplet collisions in a vacuum environment: an experimental investigation on the role of viscosity. Exp. Fluids 34, 2841.CrossRefGoogle Scholar
Wöhrwag, M., Semprebon, C., Mazloomi Moqaddam, A., Karlin, I. & Kusumaatmaja, H. 2018 Ternary free-energy entropic lattice Boltzmann model with a high density ratio. Phys. Rev. Lett. 120, 234501.CrossRefGoogle ScholarPubMed
Yarin, A. L. 2006 Drop impact dynamics: splashing, spreading, receding, bouncing …. Annu. Rev. Fluid Mech. 38 (1), 159192.CrossRefGoogle Scholar
Yarin, A. L., Pourdeyhimi, B. & Ramakrishna, S. 2014 Fundamentals and Applications of Micro- and Nanofibers. Cambridge University Press.CrossRefGoogle Scholar
Yeo, Y., Chen, A. U., Basaran, O. A. & Park, K. 2004 Solvent exchange method: a novel microencapsulation technique using dual microdispensers. Pharm. Res. 21, 14191427.CrossRefGoogle ScholarPubMed

Baumgartner et al. supplementary movie 1

Hexadecane (colored) spreading on an aqueous liquid bath showing partial wetting.

Download Baumgartner et al. supplementary movie 1(Video)
Video 17.8 MB

Baumgartner et al. supplementary movie 2

Silicon oil (colored) spreading o an aqueous liquid bath showing total wetting.

Download Baumgartner et al. supplementary movie 2(Video)
Video 17.8 MB

Baumgartner et al. supplementary movie 3

This movie corresponds to a jet of silicon oil M5 and drops of G5 exhibiting fragmented drops in jet. It illustrates how the drops typically extend and fragment. The jet diameter is 287 µm, the drop diameter is 212 µm, the relative velocity is U=6.79 m/s and the drop frequency is 15500 Hz.

Download Baumgartner et al. supplementary movie 3(Video)
Video 3.3 MB

Baumgartner et al. supplementary movie 4

This movie corresponds to a jet of silicon oil M5 and drops of G5 exhibiting fragmented drops in jet. It illustrates how the drops typically extend and fragment. The jet diameter is 277 µm, the drop diameter is 208 µm, the relative velocity is U=7.15 m/s and the drop frequency is 15200 Hz.

Download Baumgartner et al. supplementary movie 4(Video)
Video 3.8 MB

Baumgartner et al. supplementary movie 5

This movie corresponds to a jet n-hexadecane and drops of G5 exhibiting fragmented drops in jet. As for the movies recorded with a jet of silicon oil, the drop extension and fragmentation can be very well followed. The jet diameter is 274 µm, the drop diameter is 193 µm, the relative velocity is U=8.84 m/s and the drop frequency is 25200 Hz.

Download Baumgartner et al. supplementary movie 5(Video)
Video 3.4 MB

Baumgartner et al. supplementary movie 6

This movie corresponds to a jet n-hexadecane and drops of G5 exhibiting mixed fragmentation with jet diameter 283 µm, drop diameter 219 µm, relative velocity U= 6.11 m/s and drop frequencies 10900 Hz. Here again, the drop extension and fragmentation can be very well followed.

Download Baumgartner et al. supplementary movie 6(Video)
Video 3.1 MB

Baumgartner et al. supplementary movie 7

This movie corresponds to a jet of perfluorodecalin and drops of G5 exhibiting fragmented drops in jet. As for the jet of silicon oil or n-hexadecane, it is possible to track the drop-jet interface and identify the drop fragmentation. The jet diameter is 282 µm, the drop diameter is 220 µm, the relative velocity is U= 5.96 m/s and the drop frequency is 10850 Hz.

Download Baumgartner et al. supplementary movie 7(Video)
Video 4.9 MB

Baumgartner et al. supplementary movie 8

This movie corresponds to a jet of perfluorodecalin and drops of G5 exhibiting fragmented drops in jet. The drop-jet interface can be weel tracked and the drop fragmentation well identified. The jet diameter is 278 µm, the drop diameter is 218 µm, the relative velocity is U=5.25 m/s and the drop frequency is 10600 Hz.

Download Baumgartner et al. supplementary movie 8(Video)
Video 3.1 MB

Baumgartner et al. supplementary movie 9

This movie corresponds to a jet of G5 and drops of silicon oil M5 exhibiting a coated jet. In contrast to the movies showing aqueous drops, the drop phase is not engulfed by the jet but quickly spreads around it forming a continuous cylindrical shell. The jet diameter is 282 µm, the drop diameter is 187 µm, the relative velocities is U=4.25 m/s and the drop frequency 18000 Hz.

Download Baumgartner et al. supplementary movie 9(Video)
Video 3.7 MB

Baumgartner et al. supplementary movie 10

This movie corresponds to a jet of EtOH and drops of G5 exhibiting drops in jet. Despite the miscibility of both liquids, we observe well localized darker spheres in the jet. This observation demonstrates the possibility to create via drop-jet collisions of miscible liquids a regular composition pattern within a continous jet. This jet could then be solidified to produce advanced fibers. The jet diameter is 278 µm, the drop diameter is 199 µm, the relative velocity is U=3.72 m/s and the drop frequency is 15400 Hz.

Download Baumgartner et al. supplementary movie 10(Video)
Video 3.8 MB