Article contents
The influence of drift flow turbulence on surface gravity wave propagation
Published online by Cambridge University Press: 26 April 2006
Abstract
The theory of surface gravity waves scattering at vortex flows in the ocean is developed in this paper. A scattering amplitude is found in the Born approximation as a function of vorticity which appears very convenient for investigation of scattering at simple localized flows. It is shown that the wave scattering cross-section is determined by the vertical component of vorticity. For a random (turbulent) vortex field the scattering cross-section per unit voume is determined by a vorticity correlation function. The damping of the coherent wave component and the angular spectrum widening are calculated for multiple scattering by vortex turbulence of drift flows. The spectrum angular width evolution for waves scattered at self-similar vortices of the logarithmic boundary layer is determined only by its dynamical speed and the wave vector. The latter result may be used for a remote sensing of oceanic turbulent drift flows based on observations of surface waves.
- Type
- Research Article
- Information
- Copyright
- © 1994 Cambridge University Press
References
- 13
- Cited by