Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-11T04:13:07.942Z Has data issue: false hasContentIssue false

The influence of capillary effects on the drainage of a viscous gravity current into a deep porous medium

Published online by Cambridge University Press:  27 March 2017

Ying Liu
Affiliation:
Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, NJ 08544, USA
Zhong Zheng
Affiliation:
Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, NJ 08544, USA Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge CB3 0WA, UK
Howard A. Stone*
Affiliation:
Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, NJ 08544, USA
*
Email address for correspondence: [email protected]

Abstract

The drainage of a viscous gravity current into a deep porous medium driven by both the gravitational and capillary forces is considered in two steps. We first study the one-dimensional case where a layer of fluid drains vertically into an infinitely deep porous medium. We determine a transition from the capillary-driven regime to the gravity-driven regime as time proceeds. Second, we solve the coupled spreading and drainage problem. There are no self-similar solutions of the problem for the entire time period, so asymptotic analyses are developed for the height, depth and front location in both the early-time and the late-time periods. In addition, we present numerical results of the governing partial differential equations, which agree well with the self-similar solutions in the appropriate asymptotic limits.

Type
Papers
Copyright
© 2017 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Acton, J. M., Huppert, H. E. & Worster, M. G. 2001 Two-dimensional viscous gravity currents flowing over a deep porous medium. J. Fluid Mech. 440, 359380.Google Scholar
Batchelor, G. K. 1967 An Introduction to Fluid Dynamics. Cambridge University Press.Google Scholar
Borhan, A. & Rungta, K. K. 1992 On the radial spreading of liquids in thin porous substrates. J. Colloid Interface Sci. 154 (1), 295297.Google Scholar
Clarke, A., Blake, T. D., Carruthers, K. & Woodward, A. 2002 Spreading and imbibition of liquid droplets on porous surfaces. Langmuir 18 (8), 29802984.CrossRefGoogle Scholar
Davis, S. H. & Hocking, L. M. 1999 Spreading and imbibition of viscous liquid on a porous base. Phys. Fluids 11 (1), 4857.Google Scholar
Farcas, A. & Woods, A. W. 2009 The effect of drainage on the capillary retention of CO2 in a layered permeable rock. J. Fluid Mech. 618, 349359.Google Scholar
Gillespie, T. 1958 The spreading of low vapor pressure liquids in paper. J. Colloid Sci. 13 (1), 3250.Google Scholar
Golding, M. J., Huppert, H. E. & Neufeld, J. A. 2013 The effects of capillary forces on the axisymmetric propagation of two-phase, constant-flux gravity currents in porous media. Phys. Fluids 25, 036602.CrossRefGoogle Scholar
Golding, M. J., Neufeld, J. A., Hesse, M. A. & Huppert, H. E. 2011 Two-phase gravity currents in porous media. J. Fluid Mech. 678, 248270.CrossRefGoogle Scholar
Gratton, J. & Minotti, F. 1990 Self-similar viscous gravity currents: phase plane formalism. J. Fluid Mech. 210, 155182.CrossRefGoogle Scholar
Guo, B., Zheng, Z., Celia, M. A. & Stone, H. A. 2016 Axisymmetric flows from fluid injection into a confined porous medium. Phys. Fluids 28 (2), 022107.Google Scholar
Hallez, Y. & Magnaudet, J. 2009 A numerical investigation of horizontal viscous gravity currents. J. Fluid Mech. 630, 7191.CrossRefGoogle Scholar
Hesse, M. A., Orr, F. M. Jr & Tchelepi, H. A. 2008 Gravity currents with residual trapping. J. Fluid Mech. 611, 3560.CrossRefGoogle Scholar
Hewitt, D. R., Neufeld, J. A. & Lister, J. R. 2013 Convective shutdown in a porous medium at high rayleigh number. J. Fluid Mech. 719, 551586.CrossRefGoogle Scholar
Huppert, H. E. 1982a Flow and instability of a viscous current down a slope. Nature 300, 427429.Google Scholar
Huppert, H. E. 1982b The propagation of two-dimensional and axisymmetric viscous gravity currents over a rigid horizontal surface. J. Fluid Mech. 121, 4358.Google Scholar
Huppert, H. E. & Neufeld, J. A. 2014 The fluid mechanics of carbon dioxide sequestration. Annu. Rev. Fluid Mech. 46, 255272.CrossRefGoogle Scholar
Huppert, H. E., Neufeld, J. A. & Strandkvist, C. 2013 The competition between gravity and flow focusing in two-layered porous media. J. Fluid Mech. 720, 514.CrossRefGoogle Scholar
Huppert, H. E. & Woods, A. W. 1995 Gravity driven flows in porous layers. J. Fluid Mech. 292, 5569.Google Scholar
Juanes, R., MacMinn, C. W. & Szulczewski, M. L. 2010 The footprint of the CO2 plume during carbon dioxide storage in saline aquifers: storage efficiency for capillary trapping at the basin scale. Trans. Porous Med. 82 (1), 1930.Google Scholar
Kochina, I. N., Mikhailov, N. N. & Filinov, M. V. 1983 Groundwater mound damping. Intl J. Engng Sci. 21, 413421.Google Scholar
Lister, J. R. 1992 Viscous flows down an inclined plane from point and line sources. J. Fluid Mech. 242, 631653.Google Scholar
Lyle, S., Huppert, H. E., Hallworth, M., Bickle, M. & Chadwick, A. 2005 Axisymmetric gravity currents in a porous medium. J. Fluid Mech. 543, 293302.Google Scholar
MacMinn, C. W., Christopher, W., Szulczewski, M. L. & Juanes, R. 2010 CO2 migration in saline aquifers. Part 1. Capillary trapping under slope and groundwater flow. J. Fluid Mech. 662, 329351.Google Scholar
MacMinn, C. W., Neufeld, J. A., Hesse, M. A. & Huppert, H. E. 2012 Spreading and convective dissolution of carbon dioxide in vertically confined, horizontal aquifers. Water Resour. Res. 48 (11), W11516.Google Scholar
MacMinn, C. W., Szulczewski, M. L. & Juanes, R. 2011 CO2 migration in saline aquifers. Part 2. Capillary and solubility trapping. J. Fluid Mech. 688, 321351.Google Scholar
Neufeld, J. A., Hesse, M. A., Riaz, A., Hallworth, M. A., Tchelepi, H. A. & Huppert, H. E. 2010 Convective dissolution of carbon dioxide in saline aquifers. Geophys. Res. Lett. 37, L22404.Google Scholar
Neufeld, J. A. & Huppert, H. E. 2009 Modelling carbon dioxide sequestration in layered strata. J. Fluid Mech. 625, 353370.Google Scholar
Neufeld, J. A., Vella, D., Huppert, H. E. & Lister, J. R. 2011 Leakage from gravity currents in a porous medium. Part 1. A localized sink. J. Fluid Mech. 666, 391413.Google Scholar
Nordbotten, J. M. & Dahle, H. K. 2011 Impact of the capillary fringe in vertically integrated models for CO2 storage. Water Resour. Res. 47 (2), W02537.Google Scholar
Pritchard, D., Woods, A. W. & Hogg, A. J. 2001 On the slow draining of a gravity current moving through a layered permeable medium. J. Fluid Mech. 444, 2347.Google Scholar
Saffman, P. G. & Taylor, G. 1958 The penetration of a fluid into a porous medium or Hele–Shaw cell containing a more viscous liquid. Proc. R. Soc. Lond. A 245, 312329.Google Scholar
Sayag, R. & Neufeld, J. A. 2016 Propagation of viscous currents on a porous substrate with finite capillary entry pressure. J. Fluid Mech. 801, 6590.Google Scholar
Simpson, J. E. 1982 Gravity currents in the laboratory, atmosphere, and ocean. Annu. Rev. Fluid Mech. 14, 213234.Google Scholar
Thomas, L. P., Marino, B. M. & Linden, P. F. 1998 Gravity currents over porous substrates. J. Fluid Mech. 366, 239258.Google Scholar
Tsai, P. A., Riesing, K. & Stone, H. A. 2013 Density-driven convection enhanced by an inclined boundary: implications for geological CO2 storage. Phys. Rev. E 87 (1), 011003.Google Scholar
Ungarish, M. & Huppert, H. E. 2000 High-Reynolds-number gravity currents over a porous boundary: shallow-water solutions and box-model approximations. J. Fluid Mech. 418, 123.Google Scholar
Vella, D. & Huppert, H. E. 2006 Gravity currents in a porous medium at an inclined plane. J. Fluid Mech. 555, 353362.Google Scholar
Vella, D., Neufeld, J. A., Huppert, H. E. & Lister, J. R. 2011 Leakage from gravity currents in a porous medium. Part 2. A line sink. J. Fluid Mech. 666, 414427.Google Scholar
Woods, A. W. & Farcas, A. 2009 Capillary entry pressure and the leakage of gravity currents through a sloping layered permeable rock. J. Fluid Mech. 618, 361379.Google Scholar
Yu, Y., Zheng, Z. & Stone, H. A.2016 Movement of a gravity current in a porous medium accounting for drainage from a permeable substrate and an edge (in preparation).Google Scholar
Zheng, Z., Guo, B., Christov, I. C., Celia, M. A. & Stone, H. A. 2015a Flow regimes for fluid injection into a confined porous medium. J. Fluid Mech. 767, 881909.Google Scholar
Zheng, Z., Rongy, L. & Stone, H. A. 2015b Viscous fluid injection into a confined channel. Phys. Fluids 27 (6), 062105.Google Scholar
Zheng, Z., Shin, S. & Stone, H. A. 2015c Converging gravity currents over a porous substrate. J. Fluid Mech. 778, 669690.Google Scholar
Zheng, Z., Soh, B., Huppert, H. E. & Stone, H. A. 2013 Fluid drainage from the edge of a porous reservoir. J. Fluid Mech. 718, 558568.Google Scholar