Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-23T12:27:56.310Z Has data issue: false hasContentIssue false

Inertial and gravity wave transmissions near radiative–convective boundaries

Published online by Cambridge University Press:  14 April 2021

Tao Cai*
Affiliation:
State Key Laboratory of Lunar and Planetary Sciences, Macau University of Science and Technology, Macau, PR China
Cong Yu*
Affiliation:
State Key Laboratory of Lunar and Planetary Sciences, Macau University of Science and Technology, Macau, PR China School of Physics and Astronomy, Sun Yat-sen University, Zhuhai519082, PR China
Xing Wei
Affiliation:
Department of Astronomy, Beijing Normal University, Beijing100875, PR China
*
Email addresses for correspondence: [email protected], [email protected]
Email addresses for correspondence: [email protected], [email protected]

Abstract

In this paper, we study inertial and gravity wave transmissions near radiative–convective boundaries on the f-plane. Two configurations have been considered: waves propagate from the convective layer to the radiative stratified stable layer, or the other way around. It has been found that waves prefer to survive at low latitudes when the stable layer is strongly stratified ($N^2/(2\varOmega )^2>1$). When the stable layer is weakly stratified ($N^2/(2\varOmega )^2 < 1$), however, waves can survive at any latitude if the meridional wavenumber is large. Then we have discussed transmission ratios for two buoyancy frequency structures: the uniform stratification and the continuously varying stratification. For the uniform stratification, we have found that the transmission is efficient when the rotation is rapid, or when the wave is near the critical colatitude. For the continuously varying stratification, we have discussed the transmission ratio when the square of buoyancy frequency is an algebraic function $N^2\propto z^{\nu } (\nu >0)$. We have found that the transmission can be efficient when the rotation is rapid, or when the wave is near the critical colatitude, or when the thickness of the stratification layer is far greater than the horizontal wavelength. The transmission ratio does not depend on the configurations (radiative layer sits above convective layer, or vice versa; wave propagates outward or inward), but only on characteristics of the wave (frequency and wavenumber) and the fluid (degree of stratification).

Type
JFM Papers
Copyright
© The Author(s), 2021. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Alvan, L., Brun, A.S. & Mathis, S. 2014 Theoretical seismology in 3D: nonlinear simulations of internal gravity waves in solar-like stars. Astron. Astrophys. 565, A42.CrossRefGoogle Scholar
André, Q., Barker, A.J. & Mathis, S. 2017 Layered semi-convection and tides in giant planet interiors-I. Propagation of internal waves. Astron. Astrophys. 605, A117.CrossRefGoogle Scholar
Borovikov, V.A. 1990 The $t\rightarrow \infty$ asymptotic behavior of the green's function of the equation of internal waves. Sov. Phys. Dokl. 35, 631633.Google Scholar
Bowman, D.M., et al. 2019 Low-frequency gravity waves in blue supergiants revealed by high-precision space photometry. Nat. Astron. 3, 760765.CrossRefGoogle Scholar
Brekhovskikh, L.M., Lysanov, J.P. & Lysanov, Y..P. 2003 Fundamentals of Ocean Acoustics. Springer Science & Business Media.Google Scholar
Brun, A.S., Miesch, M.S. & Toomre, J. 2011 Modeling the dynamical coupling of solar convection with the radiative interior. Astrophys. J. 742 (2), 79.CrossRefGoogle Scholar
Cai, T. 2020 Penetrative convection for rotating Boussinesq flow in tilted $f$-planes. Astrophys. J. 898 (1), 22.CrossRefGoogle Scholar
Dintrans, B. & Rieutord, M. 2000 Oscillations of a rotating star: a non-perturbative theory. Astron. Astrophys. 354, 8698.Google Scholar
Friedlander, S. & Siegmann, W.L. 1982 Internal waves in a rotating stratified fluid in an arbitrary gravitational field. Geophys. Astrophys. Fluid Dyn. 19 (3–4), 267291.CrossRefGoogle Scholar
Fuller, J., Lecoanet, D., Cantiello, M. & Brown, B. 2014 Angular momentum transport via internal gravity waves in evolving stars. Astrophys. J. 796 (1), 17.CrossRefGoogle Scholar
Gerkema, T. & Shrira, V.I. 2005 Near-inertial waves in the ocean: beyond the “traditional approximation”. J. Fluid Mech. 529, 195219.CrossRefGoogle Scholar
Gerkema, T., Zimmerman, J.T.F., Maas, L.R.M. & Van Haren, H. 2008 Geophysical and astrophysical fluid dynamics beyond the traditional approximation. Rev. Geophys. 46 (2), RG2004.CrossRefGoogle Scholar
Goodman, J. & Lackner, C. 2009 Dynamical tides in rotating planets and stars. Astrophys. J. 696 (2), 20542067.CrossRefGoogle Scholar
Kippenhahn, R., Weigert, A. & Weiss, A. 1990 Stellar Structure and Evolution, vol. 192. Springer.CrossRefGoogle Scholar
Kumar, P., Talon, S. & Zahn, J.-P. 1999 Angular momentum redistribution by waves in the Sun. Astrophys. J. 520 (2), 859870.CrossRefGoogle Scholar
Lecoanet, D., Cantiello, M., Quataert, E., Couston, L.-A., Burns, K.J., Pope, B.J.S., Jermyn, A.S., Favier, B. & Le Bars, M. 2019 Low-frequency variability in massive stars: core generation or surface phenomenon? Astrophys. J. Lett. 886 (1), L15.CrossRefGoogle Scholar
Lecoanet, D. & Quataert, E. 2013 Internal gravity wave excitation by turbulent convection. Mon. Not. R. Astron. Soc. 430 (3), 23632376.CrossRefGoogle Scholar
Liu, S.-F., Hori, Y., Müller, S., Zheng, X., Helled, R., Lin, D. & Isella, A. 2019 The formation of Jupiter's diluted core by a giant impact. Nature 572 (7769), 355357.CrossRefGoogle ScholarPubMed
Mathis, S., Neiner, C. & Tran Minh, N. 2014 Impact of rotation on stochastic excitation of gravity and gravito-inertial waves in stars. Astron. Astrophys. 565, A47.CrossRefGoogle Scholar
Meakin, C.A. & Arnett, D. 2007 Turbulent convection in stellar interiors. I. Hydrodynamic simulation. Astrophys. J. 667 (1), 448475.CrossRefGoogle Scholar
Ogilvie, G.I. & Lin, D.N.C. 2004 Tidal dissipation in rotating giant planets. Astrophys. J. 610 (1), 477509.CrossRefGoogle Scholar
Olver, F.W.J., Lozier, D.W., Boisvert, R.F. & Clark, C.W. 2010 NIST Handbook of Mathematical Functions Hardback and CD-ROM. Cambridge University Press.Google Scholar
Paxton, B., Bildsten, L., Dotter, A., Herwig, F., Lesaffre, P. & Timmes, F. 2010 Modules for experiments in stellar astrophysics (MESA). Astrophys. J. Suppl. 192 (1), 3.CrossRefGoogle Scholar
Phillips, O.M. 1966 The Dynamics of the Upper Ocean. Cambridge University Press.Google Scholar
Pontin, C.M., Barker, A.J., Hollerbach, R., André, Q. & Mathis, S. 2020 Wave propagation in semiconvective regions of giant planets. Mon. Not. R. Astron. Soc. 493 (4), 57885806.CrossRefGoogle Scholar
Qu, Z., Huang, Y., Vaillancourt, P.A., Cole, J.N.S., Milbrandt, J.A., Yau, M.-K., Walker, K. & de Grandpré, J. 2020 Simulation of convective moistening of the extratropical lower stratosphere using a numerical weather prediction model. Atmos. Chem. Phys. 20 (4), 21432159.CrossRefGoogle Scholar
Rieutord, M. 2015 Fluid Dynamics: An Introduction. Springer International Publishing.Google Scholar
Rieutord, M., Georgeot, B. & Valdettaro, L. 2001 Inertial waves in a rotating spherical shell: attractors and asymptotic spectrum. J. Fluid Mech. 435 (1), 103144.CrossRefGoogle Scholar
Rogers, T.M. & Glatzmaier, G.A. 2005 Gravity waves in the Sun. Mon. Not. R. Astron. Soc. 364 (4), 11351146.CrossRefGoogle Scholar
Rogers, T.M., Lin, D.N.C. & Lau, H.H.B. 2012 Internal gravity waves modulate the apparent misalignment of exoplanets around hot stars. Astrophys. J. Lett. 758 (1), L6.CrossRefGoogle Scholar
Rogers, T.M., Lin, D.N.C., McElwaine, J.N. & Lau, H.H.B. 2013 Internal gravity waves in massive stars: angular momentum transport. Astrophys. J. 772 (1), 21.CrossRefGoogle Scholar
Rogers, T.M. & McElwaine, J.N. 2017 On the chemical mixing induced by internal gravity waves. Astrophys. J. Lett. 848 (1), L1.CrossRefGoogle Scholar
Savonije, G.J., Papaloizou, J.C.B. & Alberts, F. 1995 Non-adiabatic tidal forcing of a massive, uniformly rotating star. Mon. Not. R. Astron. Soc. 277 (2), 471496.CrossRefGoogle Scholar
Sutherland, B.R. 2010 Internal Gravity Waves. Cambridge University Press.CrossRefGoogle Scholar
Tellmann, S., Pätzold, M., Häusler, B., Bird, M.K. & Tyler, G.L. 2009 Structure of the venus neutral atmosphere as observed by the radio science experiment vera on venus express. J. Geophys. Res.: Planet 114, E00B36.Google Scholar
Wei, X. 2020 a Wave reflection and transmission at the interface of convective and stably stratified regions in a rotating star or planet. Astrophys. J. 890 (1), 20.CrossRefGoogle Scholar
Wei, X. 2020 b Erratum: “Wave reflection and transmission at the interface of convective and stably stratified regions in a rotating star or planet” (APJ, 2020, 890, 20). Astrophys. J. 899 (1), 88.CrossRefGoogle Scholar
Wu, Y. 2005 a Origin of tidal dissipation in Jupiter. I. Properties of inertial modes. Astrophys. J. 635 (1), 674687.CrossRefGoogle Scholar
Wu, Y. 2005 b Origin of tidal dissipation in Jupiter. II. The value of $Q$. Astrophys. J. 635 (1), 688710.CrossRefGoogle Scholar
Yu, C. 2020 Thermally driven angular momentum transport in hot Jupiters. Astrophys. J. Lett. 893 (1), L22.CrossRefGoogle Scholar
Zahn, J.P., Talon, S. & Matias, J. 1997 Angular momentum transport by internal waves in the solar interior. Astron. Astrophys. 322, 320328.Google Scholar
Zhang, H. & Lai, D. 2006 Wave excitation in three-dimensional discs by external potential. Mon. Not. R. Astron. Soc. 368 (2), 917934.CrossRefGoogle Scholar
Zhang, K. & Schubert, G. 2002 From penetrative convection to teleconvection. Astrophys. J. 572 (1), 461476.CrossRefGoogle Scholar