Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-26T15:24:25.613Z Has data issue: false hasContentIssue false

Identifying the tangle of vortex tubes in homogeneous isotropic turbulence

Published online by Cambridge University Press:  15 July 2019

Shiying Xiong
Affiliation:
State Key Laboratory for Turbulence and Complex Systems, College of Engineering, Peking University, Beijing 100871, PR China
Yue Yang*
Affiliation:
State Key Laboratory for Turbulence and Complex Systems, College of Engineering, Peking University, Beijing 100871, PR China CAPT and BIC-ESAT, Peking University, Beijing 100871, PR China
*
Email address for correspondence: [email protected]

Abstract

We extend the vortex-surface field (VSF), whose isosurface is a vortex surface consisting of vortex lines, to identify vortex tubes and sheets in homogeneous isotropic turbulence. The VSF at a time instant is constructed by solving a pseudo-transport equation. This equation is convected by a given instantaneous vorticity obtained from direct numerical simulation. In each pseudo-time step, we develop a novel local optimization algorithm to minimize a hybrid VSF constraint, balancing the accuracy and smoothness of VSF solutions. This key improvement makes the numerical construction of VSFs feasible for arbitrarily complex flow fields, as a general flow diagnostic tool. In the visualization of VSF isosurfaces in decaying homogeneous isotropic turbulence, the initial curved vortex sheets first evolve into vortex tubes, and then the vortex tubes are stretched and tangled, constituting a complex network. Some vortex tubes exhibit helical geometry, which suggests the important role of vortex twisting in the generation of small-scale structures in energy cascade.

Type
JFM Papers
Copyright
© 2019 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bermejo-Moreno, I., Pullin, D. I. & Horiuti, K. 2009 Geometry of enstrophy and dissipation, grid resolution effects and proximity issues in turbulence. J. Fluid Mech. 620, 121166.Google Scholar
Brachet, M. E., Meiron, D. I., Orszag, S. A., Nickel, B. G., Morf, R. H. & Frisch, U. 1983 Small-scale structure of the Taylor–Green vortex. J. Fluid Mech. 130, 411452.Google Scholar
Brethouwer, G., Hunt, J. C. R. & Nieuwstadt, F. T. M. 2003 Micro-structure and Lagrangian statistics of the scalar field with a mean gradient in isotropic turbulence. J. Fluid Mech. 474, 193225.Google Scholar
Cardesa, J. I., Vela-Martin, A. & Jimenez, J. 2017 The turbulent cascade in five dimensions. Science 357, 782784.Google Scholar
Carter, D. W. & Coletti, F. 2018 Small-scale structure and energy transfer in homogeneous turbulence. J. Fluid Mech. 854, 505543.Google Scholar
Chern, A., Knöppel, F., Pinkall, U. & Schröder, P. 2017 Inside fluids: Clebsch maps for visualization and processing. ACM Trans. Graph. 36, 142.Google Scholar
Clebsch, A. 1859 Ueber die Integration der hydrodynamischen Gleichungen. J. Reine Angew. Math. 56, 110.Google Scholar
Davidson, P. A. 2004 Turbulence: An Introduction for Scientists and Engineers. Oxford University Press.Google Scholar
Elghobashi, S. & Truesdell, G. C. 1992 Direct simulation of particle dispersion in a decaying isotropic turbulence. J. Fluid Mech. 242, 655700.Google Scholar
Evans, L. C. 2010 Partial Differential Equations, 2nd edn. American Mathematical Society.Google Scholar
Fukumoto, Y. & Okuluv, V. L. 2005 The velocity field induced by a helical vortex tube. Phys. Fluids 17, 107101.Google Scholar
Galar, M., Jurio, A., Lopez-Molina, C., Paternain, D., Sanz, J. & Bustince, H. 2013 Aggregation functions to combine RGB color channels in stereo matching. Opt. Express 21, 12471257.Google Scholar
Goodman, J. B. & Leveque, R. J. 1985 On the accuracy of stable schemes for 2D scalar conservation laws. Math. Comput. 45, 1521.Google Scholar
Goto, S. 2008 A physical mechanism of the energy cascade in homogeneous isotropic turbulence. J. Fluid Mech. 605, 355366.Google Scholar
Hao, J., Xiong, S. & Yang, Y. 2019 Tracking vortex surfaces frozen in the virtual velocity in non-ideal flows. J. Fluid Mech. 863, 513544.Google Scholar
He, P. & Yang, Y. 2016 Construction of initial vortex-surface fields and Clebsch potentials for flows with high-symmetry using first integrals. Phys. Fluids 28, 037101.Google Scholar
Hirsch, C. 1990 Numerical Computation of Internal and External Flows. Wiley.Google Scholar
Horiuti, K. & Fujisawa, T. 2008 The multi-mode stretched spiral vortex in homogeneous isotropic turbulence. J. Fluid Mech. 595, 341366.Google Scholar
Hosokawa, I. & Yamamoto, K. 1986 Energy decay of three-dimensional isotropic turbulence. Phys. Fluids 29, 2013.Google Scholar
Hunt, J. C. R., Wray, A. & Moin, P. 1988 Eddies, stream, and convergence zones in turbulent flows. In Center for Turbulence Research Report, Stanford, CA, USA, pp. 193208.Google Scholar
Ishida, T., Davidson, P. A. & Kaneda, Y. 2006 On the decay of isotropic turbulence. J. Fluid Mech. 564, 455475.Google Scholar
Ishihara, T., Kaneda, Y., Yokokawa, M., Itakura, K. & Uno, A. 2007 Small-scale statistics in highresolution direct numerical simulation of turbulence: Reynolds number dependence of one-point velocity gradient statistics. J. Fluid Mech. 592, 335366.Google Scholar
Jeong, J. & Hussain, F. 1995 On the identification of a vortex. J. Fluid Mech. 285, 6994.Google Scholar
Jiang, G. S. & Shu, C. W. 1996 Efficient implementation of weighted ENO schemes. J. Comput. Phys. 126, 202228.Google Scholar
Jimenez, J., Wray, A. A., Saffman, P. G. & Rogallo, R. S. 1993 The structure of intense vorticity in isotropic turbulence. J. Fluid Mech. 255, 6590.Google Scholar
Kerr, R. M. 1985 Higher-order derivative correlations and the alignment of small-scale structures in isotropic numerical turbulence. J. Fluid Mech. 153, 3158.Google Scholar
Kida, S. & Takaoka, M. 1994 Vortex reconnection. Annu. Rev. Fluid Mech. 26, 169189.Google Scholar
Kolmogorov, A. N. 1941a On degeneration of isotropic turbulence in an incompressible viscous fluid. Dokl. Akad. Nauk SSSR 31, 538540.Google Scholar
Kolmogorov, A. N. 1941b The local structure of turbulence in incompressible viscous fluid for very large Reynolds numbers. Dokl. Akad. Nauk SSSR 30, 299303.Google Scholar
Kraichnan, R. H. 1970 Diffusion by a random velocity field. Phys. Fluids 13, 1.Google Scholar
Leung, T., Swaminathan, N. & Davidson, P. A. 2012 Geometry and interaction of structures in homogeneous isotropic turbulence. J. Fluid Mech. 710, 453481.Google Scholar
Lundgren, T. S. 1982 Strained spiral vortex model for turbulent fine structure. Phys. Fluids 25, 21932203.Google Scholar
Lundgren, T. S. 1993 A small-scale turbulence model. Phys. Fluids A 5, 14721483.Google Scholar
Lundgren, T. S. & Mansour, N. N. 1996 Transition to turbulence in an elliptic vortex. J. Fluid Mech. 307, 4362.Google Scholar
Mansour, N. N. & Wray, A. A. 1994 Decay of isotropic turbulence at low Reynolds number. Phys. Fluids 6, 808.Google Scholar
Moffatt, H. K., Kida, S. & Ohkitani, K. 1994 Stretched vortices—the sinews of turbulence; large-Reynolds-number asymptotics. J. Fluid Mech. 259, 241264.Google Scholar
Moisy, F. & Jimenez, J. 2004 Geometry and clustering of intense structures in isotropic turbulence. J. Fluid Mech. 513, 111133.Google Scholar
Peng, N. & Yang, Y. 2018 Effects of the Mach number on the evolution of vortex-surface fields in compressible Taylor–Green flows. Phys. Rev. Fluids 3, 013401.Google Scholar
Pope, S. B. 2000 Turbulent Flows. Cambridge University Press.Google Scholar
Pullin, D. I. & Saffman, P. G. 1998 Vortex dynamics in turbulence. Annu. Rev. Fluid Mech. 30, 3151.Google Scholar
Pullin, D. I. & Yang, Y. 2014 Whither vortex tubes. Fluid Dyn. Res. 46, 061418.Google Scholar
Ricca, R. L. 1994 The effect of torsion on the motion of a helical vortex filament. J. Fluid Mech. 273, 241259.Google Scholar
Richardson, L. F. 1920 The supply of energy from and to atmospheric eddies. Proc. R. Soc. Lond. 686, 354373.Google Scholar
Rogallo, R. S.1981 Numerical experiments in homogeneous turbulence. NASA Tech. Rep. TM81315.Google Scholar
Ruetsch, G. R. & Maxey, M. R. 1991 Small-scale features of vorticity and passive scalar fields in homogeneous isotropic turbulence. Phys. Fluids A 3, 6.Google Scholar
She, Z.-S., Jackson, E. & Orszag, S. A. 1990 Intermittent vortex structures in homogeneous isotropic turbulence. Nature 344, 226228.Google Scholar
She, Z.-S., Jackson, E. & Orszag, S. A. 1991 Structure and dynamics of homogeneous turbulence: models and simulations. Proc. R. Soc. Lond. 434, 101124.Google Scholar
Tannehill, J. C., Anderson, D. A. & Pletcher, R. H. 2012 Computational Fluid Mechanics and Heat Transfer, 3rd edn. CRC Press.Google Scholar
Taylor, G. I. & Green, A. E. 1937 Mechanism of the production of small eddies from large ones. Proc. R. Soc. Lond. A 158, 499521.Google Scholar
Vincent, A. & Meneguzzi, M. 1991 The spatial structure and statistical properties of homogeneous turbulence. J. Fluid Mech. 225, 120.Google Scholar
Vincent, A. & Meneguzzi, M. 1994 The dynamics of vorticity tubes in homogeneous turbulence. J. Fluid Mech. 258, 245254.Google Scholar
Wan, M., Xiao, Z., Meneveau, C., Eyink, G. L. & Chen, S. 2010 Dissipation-energy flux correlations as evidence for the Lagrangian energy cascade in turbulence. Phys. Fluids 22, 061702.Google Scholar
Weißmann, S., Pinkall, U. & Schröder, P. 2014 Smoke rings from smoke. ACM Trans. Graph. 33, 140.Google Scholar
Xiong, S. & Yang, Y. 2017 The boundary-constraint method for constructing vortex-surface fields. J. Comput. Phys. 339, 3145.Google Scholar
Yang, Y. & Pullin, D. I. 2010 On Lagrangian and vortex-surface fields for flows with Taylor–Green and Kida–Pelz initial conditions. J. Fluid Mech. 661, 446481.Google Scholar
Yang, Y. & Pullin, D. I. 2011 Evolution of vortex-surface fields in viscous Taylor–Green and Kida–Pelz flows. J. Fluid Mech. 685, 146164.Google Scholar
Yang, Y., Pullin, D. I. & Bermejo-Moreno, I. 2010 Multi-scale geometric analysis of Lagrangian structures in isotropic turbulence. J. Fluid Mech. 654, 233270.Google Scholar
Zhao, Y., Xiong, S., Yang, Y. & Chen, S. 2018 Sinuous distortion of vortex surfaces in the lateral growth of turbulent spots. Phys. Rev. Fluids 3, 074701.Google Scholar
Zhao, Y., Yang, Y. & Chen, S. 2016a Evolution of material surfaces in the temporal transition in channel flow. J. Fluid Mech. 793, 840876.Google Scholar
Zhao, Y., Yang, Y. & Chen, S. 2016b Vortex reconnection in the late transition in channel flow. J. Fluid Mech. 802, R4.Google Scholar
Zhou, H., You, J., Xiong, S., Yang, Y., Thévenin, D. & Chen, S. 2019 Interactions between the premixed flame front and the three-dimensional Taylor–Green vortex. Proc. Combust. Inst. 37, 24612468.Google Scholar
Zhou, J., Adrian, R. J., Balachandar, S. & Kendall, T. M. 1999 Mechanisms for generating coherent packets of hairpin vortices in channel flow. J. Fluid Mech. 387, 353396.Google Scholar