Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-11T06:51:26.880Z Has data issue: false hasContentIssue false

Hydrodynamic force on a small squirmer moving with a time-dependent velocity at small Reynolds numbers

Published online by Cambridge University Press:  13 October 2023

T. Redaelli
Affiliation:
Aix Marseille Univ, CNRS, Centrale Marseille, IRPHE, F-13384 Marseille, France
F. Candelier
Affiliation:
Aix Marseille Univ, CNRS, IUSTI, F-13453 Marseille, France
R. Mehaddi
Affiliation:
Université de Lorraine, CNRS, LEMTA, F-54000 Nancy, France
C. Eloy
Affiliation:
Aix Marseille Univ, CNRS, Centrale Marseille, IRPHE, F-13384 Marseille, France
B. Mehlig*
Affiliation:
Department of Physics, Gothenburg University, SE-41296 Gothenburg, Sweden
*
Email address for correspondence: [email protected]

Abstract

We calculate the hydrodynamic force on a small spherical, unsteady squirmer moving with a time-dependent velocity in a fluid at rest, taking into account convective and unsteady fluid inertia effects in perturbation theory. Our results generalise those of Lovalenti & Brady (J. Fluid Mech., vol. 256, 1993, pp. 561–605) from passive to active spherical particles. We find that convective inertia changes the history contribution to the hydrodynamic force, as it does for passive particles. We determine how the hydrodynamic force depends on the swimming gait of the unsteady squirmer. Since swimming breaks the spherical symmetry of the problem, the force is not determined completely by the outer solution of the asymptotic matching problem, as it is for passive spheres. There are additional contributions due to the inhomogeneous solution of the inner problem. We also compute the disturbance flow, illustrating convective and unsteady effects when the particle experiences a sudden start followed by a sudden stop.

Type
JFM Papers
Copyright
© The Author(s), 2023. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Afanasyev, Y. 2004 Wakes behind towed and self-propelled bodies: asymptotic theory. Phys. Fluids 16, 32353238.CrossRefGoogle Scholar
Ardekani, A.M. & Stocker, R. 2010 Stratlets: low Reynolds number point-force solutions in a stratified fluid. Phys. Rev. Lett. 105, 084502.CrossRefGoogle Scholar
Basset, A.B. 1888 A Treatise on Hydrodynamics: with Numerous Examples, vol. 2. Deighton, Bell and Company.Google Scholar
Blake, J.R. 1971 A spherical envelope approach to ciliary propulsion. J. Fluid Mech. 46, 199208.CrossRefGoogle Scholar
Boussinesq, J. 1885 Sur la resistance qu'oppose un fluide indefini en repos, sans pesanteur, au mouvement varie d'une sphere solide qu'il mouille sur toute sa surface, quand les vitesses restent bien continues et assez faibles pour que leurs carres et produits soient negligeables. C. R. Acad. Sci. Paris 100, 935937.Google Scholar
Candelier, F., Mehaddi, R., Mehlig, B. & Magnaudet, J. 2023 Second-order inertial forces and torques on a sphere in a viscous steady linear flow. J. Fluid Mech. 954, A25.CrossRefGoogle Scholar
Childress, S. 1964 The slow motion of a sphere in a rotating, viscous fluid. J. Fluid Mech. 20 (2), 305314.CrossRefGoogle Scholar
Chisholm, N.G., Legendre, D., Lauga, E. & Khair, A.S. 2016 A squirmer across Reynolds numbers. J. Fluid Mech. 796, 233256.CrossRefGoogle Scholar
Daitche, A. 2013 Advection of inertial particles in the presence of the history force: higher order numerical schemes. J. Comput. Phys. 254, 93106.CrossRefGoogle Scholar
Fauci, L.J. & Dillon, R. 2006 Biofluidmechanics of reproduction. Annu. Rev. Fluid Mech. 38 (1), 371394.CrossRefGoogle Scholar
Fenchel, T. & Hansen, P.J. 2006 Motile behaviour of the bloom-forming ciliate Mesodinium rubrum. Mar. Biol. Res. 2 (1), 3340.CrossRefGoogle Scholar
Fouxon, I. & Or, Y. 2019 Inertial self-propulsion of spherical microswimmers by rotation–translation coupling. Phys. Rev. Fluids 4 (2), 023101.CrossRefGoogle Scholar
Guasto, J.S., Rusconi, R. & Stocker, R. 2012 Fluid mechanics of planktonic microorganisms. Annu. Rev. Fluid Mech. 44 (1), 373400.CrossRefGoogle Scholar
Happel, J. & Brenner, H. 1965 Low Reynolds Number Hydrodynamics: with Special Applications to Particulate Media. Prentice-Hall.Google Scholar
Hinch, E.J. 1995 Perturbation Methods. Cambridge University Press.Google Scholar
Ishimoto, K. 2013 A spherical squirming swimmer in unsteady Stokes flow. J. Fluid Mech. 723, 163189.CrossRefGoogle Scholar
Jiang, H. 2011 Why does the jumping ciliate Mesodinium rubr possess an equatorially located propulsive ciliary belt? J. Plankton Res. 33 (7), 9981011.CrossRefGoogle Scholar
Jiang, H. & Kiorboe, T. 2011 The fluid dynamics of swimming by jumping in copepods. J. R. Soc. Interface 8 (61), 10901103.CrossRefGoogle ScholarPubMed
Khair, A.S. & Chisholm, N.G. 2014 Expansions at small Reynolds numbers for the locomotion of a spherical squirmer. Phys. Fluids 26 (1), 011902.CrossRefGoogle Scholar
Kiorboe, T., Jiang, H., Goncalves, R.J., Nielsen, L.T. & Wadhwa, N. 2014 Flow disturbances generated by feeding and swimming zooplankton. Proc. Natl Acad. Sci. USA 111 (32), 1173811743.CrossRefGoogle ScholarPubMed
Lauga, E. & Powers, T.R. 2009 The hydrodynamics of swimming microorganisms. Rep. Prog. Phys. 72 (9), 096601.CrossRefGoogle Scholar
Legendre, D. & Magnaudet, J. 1998 The lift force on a spherical bubble in a viscous linear shear flow. J. Fluid Mech. 368, 81126.CrossRefGoogle Scholar
Lighthill, M.J. 1952 On the squirming motion of nearly spherical deformable bodies through liquids at very small Reynolds numbers. Commun. Pure Appl. Maths 5 (2), 109118.CrossRefGoogle Scholar
Lovalenti, P.M. & Brady, J.F. 1993 The hydrodynamic force on a rigid particle undergoing arbitrary time-dependent motion at small Reynolds number. J. Fluid Mech. 256, 561605.CrossRefGoogle Scholar
Mehaddi, R., Candelier, F. & Mehlig, B. 2018 Inertial drag on a sphere settling in a stratified fluid. J. Fluid Mech. 855, 10741087.CrossRefGoogle Scholar
Meibohm, J., Candelier, F., Rosén, T., Einarsson, J., Lundell, F. & Mehlig, B. 2016 Angular velocity of a spheroid log rolling in a simple shear at small Reynolds number. Phys. Rev. Fluids 1, 084203.CrossRefGoogle Scholar
Oseen, C.W. 1927 Neuere Methoden und Ergebnisse in der Hydrodynamik. Akademische Verlagsgesellschaft mbH.Google Scholar
Pak, O.S. & Lauga, E. 2014 Generalized squirming motion of a sphere. J. Engng Maths 88, 128.CrossRefGoogle Scholar
Pedley, T.J. 2016 Spherical squirmers: models for swimming micro-organisms. IMA J. Appl. Maths 81, 488521.CrossRefGoogle Scholar
Qiu, J., Cui, Z., Climent, E. & Zhao, L. 2022 Gyrotactic mechanism induced by fluid inertial torque for settling elongated microswimmers. Phys. Rev. Res. 4, 023094.CrossRefGoogle Scholar
Redaelli, T., Candelier, F., Mehaddi, R. & Mehlig, B. 2022 Unsteady and inertial dynamics of a small active particle in a fluid. Phys. Rev. Fluids 7, 044304.CrossRefGoogle Scholar
Saffman, P.G.T. 1965 The lift on a small sphere in a slow shear flow. J. Fluid Mech. 22 (2), 385400.CrossRefGoogle Scholar
Sano, T. 1981 Unsteady flow past a sphere at low Reynolds number. J. Fluid Mech. 112, 433441.CrossRefGoogle Scholar
Sennitskii, V.L. 1990 Self motion of a body in a fluid. J. Appl. Mech. Tech. Phys. 31, 266272.CrossRefGoogle Scholar
Shu, J.-J. & Chwang, A.T. 2001 Generalized fundamental solutions for unsteady viscous flows. Phys. Rev. E 63 (5), 051201.CrossRefGoogle ScholarPubMed
Spelman, T.A. & Lauga, E. 2017 Arbitrary axisymmetric steady streaming: flow, force and propulsion. J. Engng Maths 105 (1), 3165.CrossRefGoogle Scholar
Visser, A. 2011 Small, Wet & Rational, Individual Based Zooplankton Ecology. DTU.Google Scholar
Wadhwa, N., Andersen, A. & Kiorboe, T. 2014 Hydrodynamics and energetics of jumping copepod nauplii and copepodids. J. Expl Biol. 217, 30853094.Google ScholarPubMed
Wang, S. & Ardekani, A. 2012 a Inertial squirmer. Phys. Fluids 24 (10), 101902.CrossRefGoogle Scholar
Wang, S. & Ardekani, A.M. 2012 b Unsteady swimming of small organisms. J. Fluid Mech. 702, 286297.CrossRefGoogle Scholar
Wei, D., Dehnavi, P.G., Aubin-Tam, M.-E. & Tam, D. 2021 Measurements of the unsteady flow field around beating cilia. J. Fluid Mech. 915, A70.CrossRefGoogle Scholar
Yates, G.T. 1986 How microorganisms move through water: the hydrodynamics of ciliary and flagellar propulsion reveal how microorganisms overcome the extreme effect of the viscosity of water. Am. Sci. 74 (4), 358365.Google Scholar