Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-09T09:35:02.281Z Has data issue: false hasContentIssue false

Hydrodynamic ejection caused by laser-induced optical breakdown

Published online by Cambridge University Press:  07 February 2020

Jonathan M. Wang
Affiliation:
Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
David A. Buchta
Affiliation:
The Center for Exascale Simulation of Plasma-coupled Combustion, University of Illinois at Urbana-Champaign, IL 61801, USA
Jonathan B. Freund*
Affiliation:
Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA Department of Aerospace Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
*
Email address for correspondence: [email protected]

Abstract

A focused laser can cause local optical breakdown of a gas, which leads to rapid deposition of energy into a high-temperature plasma kernel that expands and induces a complex flow. For some conditions, hot gas is rapidly ejected along the laser axis up to distances several times the kernel size, with a particularly curious feature: relatively small changes in, for example, initial pressure can cause the direction of this ejection to reverse. Detailed axisymmetric simulations of a model energy kernel in an inert gas provide a hydrodynamic description of this phenomenon, reproducing key observations in corresponding experiments, including the vortex-ring-like features that constitute the ejection. These simulations are analysed to show how changes in the early-time kernel can lead to ejection or its reversal via alteration in the relative strength and position of the vorticity produced. A corresponding semi-infinite geometry is used to isolate two mechanisms: vorticity production by the generated shock and by baroclinic torque at the kernel boundary. Dependence on the initial kernel asymmetry is quantified, as it ultimately determines whether the vorticity, upon its subsequent evolution, develops into the ring-like structure that ejects. Even simple elongation of the energy kernel alone can reverse the direction.

Type
JFM Papers
Copyright
© The Author(s), 2020. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adelgren, R., Elliot, G., Knight, D., Zheltovodov, A. & Beutner, T. 2001 Energy deposition in supersonic flows. In 39th Aerospace Sciences Meeting and Exhibit, pp. 885917. American Institute of Aeronautics & Astronautics (AIAA).Google Scholar
Adelgren, R. G., Yan, H., Elliott, G. S., Knight, D. D., Beutner, T. J. & Zheltovodov, A. A. 2005 Control of Edney IV interaction by pulsed laser energy deposition. AIAA J. 43 (2), 256269.CrossRefGoogle Scholar
Alberti, A., Munafò, A., Koll, M. D., Nishihara, M., Pantano, C., Freund, J. B., Elliott, G. S. & Panesi, M. 2019 Laser-induced non-equilibrium plasma kernel dynamics. J. Phys. D. 53 (2), 025201.Google Scholar
Archer, P. J., Thomas, T. G. & Coleman, G. N. 2008 Direct numerical simulation of vortex ring evolution from the laminar to the early turbulent regime. J. Fluid Mech. 598, 201226.CrossRefGoogle Scholar
Bane, S. P. M., Ziegler, J. L. & Shepherd, J. E. 2015 Investigation of the effect of electrode geometry on spark ignition. Combust. Flame 162 (2), 462469.CrossRefGoogle Scholar
Blake, J. R. & Gibson, D. C. 1987 Cavitation bubbles near boundaries. Annu. Rev. Fluid Mech. 19 (1), 99123.CrossRefGoogle Scholar
Bogey, C., De Cacqueray, N. & Bailly, C. 2009 A shock-capturing methodology based on adaptative spatial filtering for high-order non-linear computations. J. Comput. Phys. 228 (5), 14471465.CrossRefGoogle Scholar
Boyer, D. W. 1960 An experimental study of the explosion generated by a pressurized sphere. J. Fluid Mech. 9 (3), 401429.CrossRefGoogle Scholar
Bradley, D., Sheppard, C. G. W., Suardjaja, I. M. & Woolley, R. 2004 Fundamentals of high-energy spark ignition with lasers. Combust. Flame 138 (1–2), 5577.CrossRefGoogle Scholar
Brieschenk, S., O’Byrne, S. & Kleine, H. 2013a Laser-induced plasma ignition studies in a model scramjet engine. Combust. Flame 160 (1), 145148.CrossRefGoogle Scholar
Brieschenk, S., O’Byrne, S. & Kleine, H. 2013b Visualization of jet development in laser-induced plasmas. Opt. Lett. 38 (5), 664666.CrossRefGoogle Scholar
Brode, H. L. 1955 Numerical solutions of spherical blast waves. J. Appl. Phys. 26 (6), 766775.CrossRefGoogle Scholar
Colonius, T. 2004 Modeling artificial boundary conditions for compressible flow. Annu. Rev. Fluid Mech. 36, 315345.CrossRefGoogle Scholar
Dumitrache, C., VanOsdol, R., Limbach, C. M. & Yalin, A. P. 2017 Control of early flame kernel growth by multi-wavelength laser pulses for enhanced ignition. Sci. Rep. 7 (1), 10239.CrossRefGoogle ScholarPubMed
Freund, J. B. 1997 Proposed inflow/outflow boundary condition for direct computation of aerodynamic sound. AIAA J. 35 (4), 740742.CrossRefGoogle Scholar
Friedman, M. P. 1961 A simplified analysis of spherical and cylindrical blast waves. J. Fluid Mech. 11 (1), 115.CrossRefGoogle Scholar
Ghosh, S. & Mahesh, K. 2008 Numerical simulation of the fluid dynamic effects of laser energy deposition in air. J. Fluid Mech. 605, 329354.CrossRefGoogle Scholar
Gibbons, N., Gehre, R., Brieschenk, S. & Wheatley, V. 2018 Blast wave-induced mixing in a laser ignited hypersonic flow. J. Fluids Engng 140 (5), 050902.Google Scholar
Glumac, N. G. & Elliott, G. S. 2007 The effect of ambient pressure on laser-induced plasmas in air. Opt. Lasers Engng 45 (1), 2735.CrossRefGoogle Scholar
Glumac, N. G., Elliott, G. S. & Boguszko, M. 2005 Temporal and spatial evolution of a laser spark in air. AIAA J. 43 (9), 19841994.CrossRefGoogle Scholar
Gregorčič, P., Diaci, J. & Možina, J. 2013 Two-dimensional measurements of laser-induced breakdown in air by high-speed two-frame shadowgraphy. Appl. Phys. A 112 (1), 4955.CrossRefGoogle Scholar
Harilal, S. S., Brumfield, B. E. & Phillips, M. C. 2015 Lifecycle of laser-produced air sparks. Phys. Plasmas 22 (6), 063301.CrossRefGoogle Scholar
Harilal, S. S., Miloshevsky, G. V., Diwakar, P. K., LaHaye, N. L. & Hassanein, A. 2012 Experimental and computational study of complex shockwave dynamics in laser ablation plumes in argon atmosphere. Phys. Plasmas 19 (8), 083504.CrossRefGoogle Scholar
Hayes, W. D. 1957 The vorticity jump across a gasdynamic discontinuity. J. Fluid Mech. 2 (6), 595600.CrossRefGoogle Scholar
Johnsen, E., Larsson, J., Bhagatwala, A. V., Cabot, W. H., Moin, P., Olson, B. J., Rawat, P. S., Shankar, S. K., Sjögreen, B., Yee, H. C. et al. 2010 Assessment of high-resolution methods for numerical simulations of compressible turbulence with shock waves. J. Comput. Phys. 229 (4), 12131237.CrossRefGoogle Scholar
Kandala, R. & Candler, G. V. 2004 Numerical studies of laser-induced energy deposition for supersonic flow control. AIAA J. 42 (11), 22662275.CrossRefGoogle Scholar
Koll, M. D., Elliott, G. S. & Freund, J. B. 2020 Particle image velocimetry of a nano-second laser induced breakdown in air. In AIAA Scitech 2020 Forum, pp. 20472058.Google Scholar
Kono, M., Niu, K., Tsukamoto, T. & Ujiie, Y. 1988 Mechanism of flame kernel formation produced by short duration sparks. In Symposium (International) on Combustion, pp. 16431649. Elsevier.Google Scholar
Lacaze, G., Cuenot, B., Poinsot, T. & Oschwald, M. 2009 Large eddy simulation of laser ignition and compressible reacting flow in a rocket-like configuration. Combust. Flame 156 (6), 11661180.CrossRefGoogle Scholar
Lele, S. K. 1992 Compact finite difference schemes with spectral-like resolution. J. Comput. Phys. 103 (1), 1642.CrossRefGoogle Scholar
Lighthill, M. J. 1957 Dynamics of a dissociating gas. Part I. Equilibrium flow. J. Fluid Mech. 2 (1), 132.CrossRefGoogle Scholar
Limbach, C. M.2015 Characterization of nanosecond, femtosecond and dual pulse laser energy deposition in air for flow control and diagnostic applications. PhD thesis, Princeton University, Princeton, NJ.Google Scholar
Ling, Y. & Balachandar, S. 2018 Asymptotic scaling laws and semi-similarity solutions for a finite-source spherical blast wave. J. Fluid Mech. 850, 674707.CrossRefGoogle Scholar
Liu, J. & Wang, W. 2009 Characterization and regularity for axisymmetric solenoidal vector fields with application to Navier–Stokes equation. SIAM J. Math. Anal. 41 (5), 18251850.CrossRefGoogle Scholar
Lo, S.-C., Blaisdell, G. A. & Lyrintzis, A. S. 2010 High-order shock capturing schemes for turbulence calculations. Intl J. Numer. Meth. Fluids 62 (5), 473498.Google Scholar
Massa, L. L. & Freund, J. B. 2016 An integrated predictive simulation model for the plasma-assisted ignition of a fuel jet in a turbulent crossflow. In 54th AIAA Aerospace Sciences Meeting, pp. 21542201. American Institute of Aeronautics & Astronautics (AIAA).Google Scholar
Massa, L. L. & Freund, J. B. 2017 Plasma-combustion coupling in a dielectric-barrier discharge actuated fuel jet. Combust. Flame 184, 208232.CrossRefGoogle Scholar
Meyerand, R. G. & Haught, A. F. 1963 Gas breakdown at optical frequencies. Phys. Rev. Lett. 11 (9), 401403.CrossRefGoogle Scholar
Morgan, C. G. 1975 Laser-induced breakdown of gases. Rep. Prog. Phys. 38 (5), 621665.CrossRefGoogle Scholar
Morsy, M. H. & Chung, S. H. 2002 Numerical simulation of front lobe formation in laser-induced spark ignition of CH4/air mixtures. Proc. Combust. Inst. 29 (2), 16131619.CrossRefGoogle Scholar
Nishihara, M., Freund, J. B., Glumac, N. G. & Elliott, G. S. 2018 Influence of mode-beating pulse on laser-induced plasma. J. Phys. D 51 (13), 135601.Google Scholar
Phuoc, T. X. 2006 Laser-induced spark ignition fundamental and applications. Opt. Lasers Engng 44 (5), 351397.CrossRefGoogle Scholar
Picone, J. M. & Boris, J. P. 1983 Vorticity generation by asymmetric energy deposition in a gaseous medium. Phys. Fluids 26 (2), 365382.CrossRefGoogle Scholar
Picone, J. M. & Boris, J. P. 1988 Vorticity generation by shock propagation through bubbles in a gas. J. Fluid Mech. 189, 2351.CrossRefGoogle Scholar
Pirozzoli, S. 2002 Conservative hybrid compact-WENO schemes for shock–turbulence interaction. J. Comput. Phys. 178 (1), 81117.CrossRefGoogle Scholar
Plesset, M. S. & Mitchell, T. P. 1956 On the stability of the spherical shape of a vapor cavity in a liquid. Q. Appl. Maths 13 (4), 419430.CrossRefGoogle Scholar
Poinsot, T. J. & Lele, S. K. 1992 Boundary conditions for direct simulations of compressible viscous flows. J. Comput. Phys. 101 (1), 104129.CrossRefGoogle Scholar
Ranjan, D., Niederhaus, J., Motl, B., Anderson, M., Oakley, J. & Bonazza, R. 2007 Experimental investigation of primary and secondary features in high-Mach-number shock–bubble interaction. Phys. Rev. Lett. 98 (2), 024502.CrossRefGoogle ScholarPubMed
Retter, J. E., Glumac, N. G. & Elliott, G. S.2017 XPACC: stand burner ignition profiles. Tech. Rep. University of Illinois at Urbana-Champaign, IL.Google Scholar
Riggins, D., Nelson, H. F. & Johnson, E. 1999 Blunt-body wave drag reduction using focused energy deposition. AIAA J. 37 (4), 460467.CrossRefGoogle Scholar
Ronney, P. D. 1994 Laser versus conventional ignition of flames. Opt. Engng 33 (2), 510522.CrossRefGoogle Scholar
Schmieder, R. W. 1981 Laser spark ignition and extinction of a methane–air diffusion flame. J. Appl. Phys. 52 (4), 30003003.CrossRefGoogle Scholar
Spiglanin, T. A., Mcilroy, A., Fournier, E. W., Cohen, R. B. & Syage, J. A. 1995 Time-resolved imaging of flame kernels: laser spark ignition of H2/O2/Ar mixtures. Combust. Flame 102 (3), 310328.CrossRefGoogle Scholar
Svetsov, V., Popova, M., Rybakov, V., Artemiev, V. & Medveduk, S. 1997 Jet and vortex flow induced by anisotropic blast wave: experimental and computational study. Shock Waves 7 (6), 325334.CrossRefGoogle Scholar
Thiele, M., Warnatz, J. & Maas, U. 2000 Geometrical study of spark ignition in two dimensions. Combust. Theor. Model. 4 (4), 413434.CrossRefGoogle Scholar
Thompson, K. W. 1990 Time-dependent boundary conditions for hyperbolic systems, II. J. Comput. Phys. 89 (2), 439461.CrossRefGoogle Scholar
Thompson, P. A. 1971 Compressible-fluid Dynamic. McGraw-Hill.Google Scholar
Torikai, H., Soga, Y. & Ito, A. 2017 Schlieren visualization of blast extinguishment with laser-induced breakdown. Proc. Combust. Inst. 36 (2), 32973304.CrossRefGoogle Scholar
Truesdell, C. 1952 On curved shocks in steady plane flow of an ideal fluid. J. Aero. Sci. 19 (12), 826828.Google Scholar