Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-09T23:58:30.312Z Has data issue: false hasContentIssue false

Heat transfer and flow regimes in quasi-static magnetoconvection with a vertical magnetic field

Published online by Cambridge University Press:  02 September 2019

Ming Yan*
Affiliation:
Department of Physics, University of Colorado, Boulder, CO 80309, USA
Michael A. Calkins
Affiliation:
Department of Physics, University of Colorado, Boulder, CO 80309, USA
Stefano Maffei
Affiliation:
Department of Physics, University of Colorado, Boulder, CO 80309, USA
Keith Julien
Affiliation:
Department of Applied Mathematics, University of Colorado, Boulder, CO 80309, USA
Steven M. Tobias
Affiliation:
Department of Applied Mathematics, University of Leeds, Leeds LS2 9JT, UK
Philippe Marti
Affiliation:
Department of Earth Science, ETH Zurich, 8092 Zurich, Switzerland
*
Email address for correspondence: [email protected]

Abstract

Numerical simulations of quasi-static magnetoconvection with a vertical magnetic field are carried out up to a Chandrasekhar number of $Q=10^{8}$ over a broad range of Rayleigh numbers $Ra$. Three magnetoconvection regimes are identified: two of the regimes are magnetically constrained in the sense that a leading-order balance exists between the Lorentz and buoyancy forces, whereas the third regime is characterized by unbalanced dynamics that is similar to non-magnetic convection. Each regime is distinguished by flow morphology, momentum and heat equation balances, and heat transport behaviour. One of the magnetically constrained regimes appears to represent an ‘ultimate’ magnetoconvection regime in the dual limit of asymptotically large buoyancy forcing and magnetic field strength; this regime is characterized by an interconnected network of anisotropic, spatially localized fluid columns aligned with the direction of the imposed magnetic field that remain quasi-laminar despite having large flow speeds. As for non-magnetic convection, heat transport is controlled primarily by the thermal boundary layer. Empirically, the scaling of the heat transport and flow speeds with $Ra$ appear to be independent of the thermal Prandtl number within the magnetically constrained, high-$Q$ regimes.

Type
JFM Papers
Copyright
© 2019 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ahlers, G., Grossmann, S. & Lohse, D. 2009 Heat transfer and large scale dynamics in turbulent Rayleigh–Bénard convection. Rev. Mod. Phys. 81 (2), 503537.10.1103/RevModPhys.81.503Google Scholar
Aubert, J., Gastine, T. & Fournier, A. 2017 Spherical convective dynamos in the rapidly rotating asymptotic regime. J. Fluid Mech. 813, 558593.10.1017/jfm.2016.789Google Scholar
Aurnou, J. M. & Olson, P. 2001 Experiments on Rayleigh–Bénard convection, magnetoconvection, and rotating magnetoconvection in liquid gallium. J. Fluid Mech. 430, 283307.10.1017/S0022112000002950Google Scholar
Bhattacharjee, J. K., Das, A. & Banerjee, K. 1991 Turbulent Rayleigh–Bénard convection in a conducting fluid in a strong magnetic field. Phys. Rev. A 43 (2), 10971099.10.1103/PhysRevA.43.1097Google Scholar
Bhattacharyya, S. N. 2006 Scaling in magnetohydrodynamic convection at high Rayleigh number. Phys. Rev. E 74 (3), 035301.Google Scholar
Burr, U. & Müller, U. 2001 Rayleigh–Bénard in liquid metal layers under the influence of a vertical magnetic field. Phys. Fluids 13, 32473257.10.1063/1.1404385Google Scholar
Castaing, B., Gunaratne, G., Heslot, F., Kadanoff, L., Libchaber, A., Thomae, S., Wu, X., Zaleski, S. & Zanetti, G. 1989 Scaling of hard thermal turbulence in Rayleigh–Bénard convection. J. Fluid Mech. 204, 130.10.1017/S0022112089001643Google Scholar
Cattaneo, F., Emonet, T. & Weiss, N. 2003 On the interaction between convection and magnetic fields. Astrophys. J. 588 (2), 11831198.10.1086/374313Google Scholar
Chandrasekhar, S. 1961 Hydrodynamic and Hydromagnetic Stability. Oxford University Press.Google Scholar
Chillà, F. & Schumacher, J. 2012 New perspectives in turbulent Rayleigh–Bénard convection. Eur. Phys. J. E 35 (7), 58.Google Scholar
Cioni, S., Chaumat, S. & Sommeria, J. 2000 Effect of a vertical magnetic field on turbulent Rayleigh–Bénard convection. Phys. Rev. E 62 (4), R4520.Google Scholar
Clyne, J., Mininni, P., Norton, A. & Rast, M. 2007 Interactive desktop analysis of high resolution simulations: application to turbulent plume dynamics and current sheet formation. New J. Phys. 9 (8), 301.10.1088/1367-2630/9/8/301Google Scholar
Clyne, J. & Rast, M. 2005 A prototype discovery environment for analyzing and visualizing terascale turbulent fluid flow simulations. In Electronic Imaging 2005, pp. 284294. International Society for Optics and Photonics.Google Scholar
Davidson, P. A. 2013 Turbulence in Rotating, Stratified and Electrically Conducting Fluids. Cambridge University Press.10.1017/CBO9781139208673Google Scholar
Favier, B., Silvers, L. J. & Proctor, M. R. E. 2014 Inverse cascade and symmetry breaking in rapidly rotating Boussinesq convection. Phys. Fluids 26, 096605.10.1063/1.4895131Google Scholar
French, M., Becker, A., Lorenzen, W., Nettelmann, N., Bethkenhagen, M., Wicht, J. & Redmer, R. 2012 Ab initio simulations for material properties along the Jupiter adiabat. Astrophys. J. Suppl. Ser. 202 (1), 5.10.1088/0067-0049/202/1/5Google Scholar
Gillet, N., Brito, D., Jault, D. & Nataf, H.-C. 2007 Experimental and numerical studies of magnetoconvection in a rapidly rotating spherical shell. J. Fluid Mech. 580, 123143.10.1017/S0022112007005289Google Scholar
Gillet, N., Jault, D., Canet, E. & Fournier, A. 2010 Fast torsional waves and strong magnetic field within the Earth’s core. Nature 465, 7477.10.1038/nature09010Google Scholar
Grossmann, S. & Lohse, D. 2000 Scaling in thermal convection: a unifying theory. J. Fluid Mech. 407, 2756.10.1017/S0022112099007545Google Scholar
Guervilly, C., Hughes, D. W. & Jones, C. A. 2014 Large-scale vortices in rapidly rotating Rayleigh–Bénard convection. J. Fluid Mech. 758, 407435.10.1017/jfm.2014.542Google Scholar
Jones, C. A. 2011 Planetary magnetic fields and fluid dynamos. Annu. Rev. Fluid Mech. 43, 583614.10.1146/annurev-fluid-122109-160727Google Scholar
Jones, C. A. & Roberts, P. H. 2000 Convection-driven dynamos in a rotating plane layer. J. Fluid Mech. 404, 311343.10.1017/S0022112099007363Google Scholar
Julien, K., Knobloch, E. & Tobias, S. M. 1999 Strongly nonlinear magnetoconvection in three dimensions. Physica D 128, 105129.Google Scholar
Julien, K., Rubio, A. M., Grooms, I. & Knobloch, E. 2012 Statistical and physical balances in low Rossby number Rayleigh–Bénard convection. Geophys. Astrophys. Fluid Dyn. 106 (4-5), 392428.10.1080/03091929.2012.696109Google Scholar
King, E. M. & Aurnou, J. M. 2013 Turbulent convection in liquid metal with and without rotation. Proc. Natl Acad. Sci. USA 110, 66886693.10.1073/pnas.1217553110Google Scholar
King, E. M. & Aurnou, J. M. 2015 Magnetostrophic balance as the optimal state for turbulent magnetoconvection. Proc. Natl Acad. Sci. USA 112 (4), 990994.10.1073/pnas.1417741112Google Scholar
Kraichnan, R. H. 1962 Turbulent thermal convection at arbitrary Prandtl number. Phys. Fluids 5 (11), 13741389.10.1063/1.1706533Google Scholar
Lepot, S., Aumaître, S. & Gallet, B. 2018 Radiative heating achieves the ultimate regime of thermal convection. Proc. Natl Acad. Sci. USA 115, 201806823.10.1073/pnas.1806823115Google Scholar
Lim, Z. L., Chong, K. L., Ding, G. & Xia, K. 2019 Quasistatic magnetoconvection: heat transport enhancement and boundary layer crossing. J. Fluid Mech. 870, 519542.10.1017/jfm.2019.232Google Scholar
Liu, W., Krasnov, D. & Schumacher, J. 2018 Wall modes in magnetoconvection at high Hartmann numbers. J. Fluid Mech. 849, R2.10.1017/jfm.2018.479Google Scholar
Lohse, D. & Toschi, F. 2003 Ultimate state of thermal convection. Phys. Rev. Lett. 90 (3), 034502.10.1103/PhysRevLett.90.034502Google Scholar
Lohse, D. & Xia, K. 2010 Small-scale properties of turbulent Rayleigh–Bénard convection. Annu. Rev. Fluid Mech. 42, 335364.10.1146/annurev.fluid.010908.165152Google Scholar
Malkus, W. V. 1954 The heat transport and spectrum of thermal turbulence. Proc. R. Soc. Lond. A 225 (1161), 196212.Google Scholar
Marti, P., Calkins, M. A. & Julien, K. 2016 A computationally efficient spectral method for modeling core dynamics. Geochem. Geophys. Geosyst. 17 (8), 30313053.10.1002/2016GC006438Google Scholar
Matthews, P. C. 1999 Asymptotic solutions for nonlinear magnetoconvection. J. Fluid Mech. 387, 397409.10.1017/S0022112099004966Google Scholar
Miesch, M. S. 2005 Large-scale dynamics of the convection zone and tachocline. Living Rev. Sol. Phys. 2, 1.10.12942/lrsp-2005-1Google Scholar
Moffatt, H. K. 1970 Turbulent dynamo action at low magnetic Reynolds number. J. Fluid Mech. 41, 435452.10.1017/S002211207000068XGoogle Scholar
Ossendrijver, M. 2003 The solar dynamo. Astron. Astrophys. Rev. 11 (4), 287367.10.1007/s00159-003-0019-3Google Scholar
Pozzo, M., Davies, C. J., Gubbins, D. & Alfé, D. 2013 Transport properties for liquid silicon–oxygen–iron mixtures at Earth’s core conditions. Phys. Rev. B 87, 014110.10.1103/PhysRevB.87.014110Google Scholar
Rubio, A. M., Julien, K., Knobloch, E. & Weiss, J. B. 2014 Upscale energy transfer in three-dimensional rapidly rotating turbulent convection. Phys. Rev. Lett. 112, 144501.10.1103/PhysRevLett.112.144501Google Scholar
Schaeffer, N., Jault, D., Nataf, H.-C. & Fournier, A.2017 Geodynamo simulations with vigorous convection and low viscosity. arXiv:1701.01299.Google Scholar
Spalart, P. R., Moser, R. D. & Rogers, M. M. 1991 Spectral methods for the Navier–Stokes equations with one infinite and two periodic directions. J. Comput. Phys. 96, 297324.10.1016/0021-9991(91)90238-GGoogle Scholar
Sprague, M., Julien, K., Knobloch, E. & Werne, J. 2006 Numerical simulation of an asymptotically reduced system for rotationally constrained convection. J. Fluid Mech. 551, 141174.10.1017/S0022112005008499Google Scholar
Stellmach, S., Lischper, M., Julien, K., Vasil, G., Cheng, J. S., Ribeiro, A., King, E. M. & Aurnou, J. M. 2014 Approaching the asymptotic regime of rapidly rotating convection: boundary layers versus interior dynamics. Phys. Rev. Lett. 113, 254501.10.1103/PhysRevLett.113.254501Google Scholar
Tao, L., Weiss, N. O., Brownjohn, D. P. & Proctor, M. R. E. 1998 Flux separation in stellar magnetoconvection. Astrophys. J. Lett. 496 (1), L39.10.1086/311240Google Scholar
Vogt, T., Horn, S., Grannan, A. M. & Aurnou, J. M. 2018a Jump rope vortex in liquid metal convection. Proc. Natl Acad. Sci. USA 115 (50), 1267412679.10.1073/pnas.1812260115Google Scholar
Vogt, T., Ishimi, W., Yanagisawa, T., Tasaka, Y., Sakuraba, A. & Eckert, S. 2018b Transition between quasi-two-dimensional and three-dimensional Rayleigh–Bénard convection in a horizontal magnetic field. Phys. Rev. Fluids 3 (1), 013503.10.1103/PhysRevFluids.3.013503Google Scholar
Yadav, R. K., Gastine, T. & Christensen, U. R. 2016 Approaching a realistic force balance in geodynamo simulations. Proc. Natl Acad. Sci. USA 113 (43), 1206512070.10.1073/pnas.1608998113Google Scholar
Yanagisawa, T., Yamagishi, Y., Hamano, Y., Tasaka, Y., Yoshida, M., Yano, K. & Takeda, Y. 2010 Structure of large-scale flows and their oscillation in the thermal convection of liquid gallium. Phys. Rev. E 82, 016320.Google Scholar
Yu, X., Zhang, J. & Ni, M. 2018 Numerical simulation of the Rayleigh–Bénard convection under the influence of magnetic fields. Intl J. Heat Mass Transfer 120, 11181131.10.1016/j.ijheatmasstransfer.2017.11.151Google Scholar
Zhu, X., Mathai, V., Stevens, R. J., Verzicco, R. & Lohse, D. 2018 Transition to the ultimate regime in two-dimensional Rayleigh–Bénard convection. Phys. Rev. Lett. 120 (14), 144502.10.1103/PhysRevLett.120.144502Google Scholar
Zürner, T., Liu, W., Krasnov, D. & Schumacher, J. 2016 Heat and momentum transfer for magnetoconvection in a vertical external magnetic field. Phys. Rev. E 94 (4), 043108.Google Scholar