Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-26T12:36:09.277Z Has data issue: false hasContentIssue false

Granular internal dynamics in a silo discharged with a conveyor belt

Published online by Cambridge University Press:  26 August 2021

D. Gella*
Affiliation:
Departamento de Física y Matemática Aplicada, Facultad de Ciencias, Universidad de Navarra, Pamplona, Spain
D. Maza
Affiliation:
Departamento de Física y Matemática Aplicada, Facultad de Ciencias, Universidad de Navarra, Pamplona, Spain
I. Zuriguel
Affiliation:
Departamento de Física y Matemática Aplicada, Facultad de Ciencias, Universidad de Navarra, Pamplona, Spain
*
Email address for correspondence: [email protected]

Abstract

The dynamics of granular media within a silo in which the grain velocities are controlled by a conveyor belt has been experimentally investigated. To this end, the building of coarse-grained field maps of different magnitudes has allowed a deep analysis of the flow properties as a function of two parameters: the orifice size and the belt velocity. First, the internal dynamics of the particles within the silo has been fully characterized by the solid fraction, the velocity of the particles and the kinetic stress. Then, the analysis of the vertical profiles of the same magnitude (plus the acceleration) has allowed connection of the internal dynamics with the flow rate. In particular, we show that the gamma parameter – which accounts for the integration of the normalized acceleration along the vertical direction – can successfully discriminate the kind of flow established within the silo (from the quasistatic regime to the free discharge) depending on the outlet size and belt velocity.

Type
JFM Papers
Copyright
© The Author(s), 2021. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Arévalo, R., Zuriguel, I., Maza, D. & Garcimartín, A. 2014 Role of driving force on the clogging of inert particles in a bottleneck. Phys. Rev. E 89, 042205.CrossRefGoogle Scholar
Ashour, A., Wegner, S., Trittel, T., Börzsönyi, T. & Stannarius, R. 2017 Outflow and clogging of shape-anisotropic grains in hoppers with small apertures. Soft Matt. 13 (2), 402414.CrossRefGoogle ScholarPubMed
Benyamine, M., Djermane, M., Dalloz-Dubrujeaud, B. & Aussillous, P. 2014 Discharge flow of a bidisperse granular media from a silo. Phys. Rev. E 90 (3), 032201.CrossRefGoogle ScholarPubMed
Beverloo, W.A., Leniger, H.A. & van de Velde, J. 1961 The flow of granular solids through orifices. Chem. Engng Sci. 15 (3), 260269.CrossRefGoogle Scholar
Brown, R.L. & Richards, J.C. 1960 Profile of flow of granules through apertures. Trans. Inst. Chem. Engrs 38 (5), 243256.Google Scholar
Darias, J.R., Gella, D., Fernández, M.E., Zuriguel, I. & Maza, D. 2020 The hopper angle role on the velocity and solid-fraction profiles at the outlet of silos. Powder Technol. 366, 488496.CrossRefGoogle Scholar
Dorbolo, S., et al. 2013 Influence of the gravity on the discharge of a silo. Granul. Matt. 15 (3), 263273.CrossRefGoogle Scholar
Dunatunga, S. & Kamrin, K. 2015 Continuum modelling and simulation of granular flows through their many phases. J. Fluid Mech. 779, 483513.CrossRefGoogle Scholar
Gella, D., Maza, D. & Zuriguel, I. 2017 Role of particle size in the kinematic properties of silo flow. Phys. Rev. E 95, 052904.CrossRefGoogle ScholarPubMed
Gella, D., Maza, D. & Zuriguel, I. 2020 Granular flow in a silo discharged with a conveyor belt. Powder Technol. 360, 104111.CrossRefGoogle Scholar
Gella, D., Zuriguel, I. & Maza, D. 2018 Decoupling geometrical and kinematic contributions to the silo clogging process. Phys. Rev. Lett. 121, 138001.CrossRefGoogle ScholarPubMed
Gella, D., Zuriguel, I. & Ortín, J. 2019 Multifractal intermittency in granular flow through bottlenecks. Phys. Rev. Lett. 123, 218004.CrossRefGoogle ScholarPubMed
Goldhirsch, I. 2010 Stress, stress asymmetry and couple stress: from discrete particles to continuous fields. Granul. Matt. 12 (3), 239252.CrossRefGoogle Scholar
Golshan, S., Esgandari, B., Zarghami, R., Blais, B. & Saleh, K. 2020 Experimental and DEM studies of velocity profiles and residence time distribution of non-spherical particles in silos. Powder Technol. 373, 510521.CrossRefGoogle Scholar
González-Montellano, C., Ramirez, A., Gallego, E. & Ayuga, F. 2011 Validation and experimental calibration of 3d discrete element models for the simulation of the discharge flow in silos. Chem. Engng Sci. 66 (21), 51165126.CrossRefGoogle Scholar
Hagen, G.H.L. 1852 Druck und bewegung des trockenen sandes. Berliner Monatsberichte Akad. D. Wiss., pp. s35–s42.Google Scholar
Janda, A., Zuriguel, I. & Maza, D. 2012 Flow rate of particles through apertures obtained from self-similar density and velocity profiles. Phys. Rev. Lett. 108, 248001.CrossRefGoogle ScholarPubMed
Jop, P., Forterre, Y. & Pouliquen, O. 2006 A constitutive law for dense granular flows. Nature 441 (7094), 727730.CrossRefGoogle ScholarPubMed
Koivisto, J., Korhonen, M., Alava, M., Ortiz, C.P., Durian, D.J. & Puisto, A. 2017 Friction controls even submerged granular flows. Soft Matt. 13 (41), 76577664.CrossRefGoogle ScholarPubMed
Madrid, M., Asencio, K. & Maza, D. 2017 Silo discharge of binary granular mixtures. Phys. Rev. E 96, 022904.CrossRefGoogle ScholarPubMed
Madrid, M.A., Darias, J.R. & Pugnaloni, L.A. 2018 Forced flow of granular media: breakdown of the Beverloo scaling. Europhys. Lett. 123 (1), 14004.CrossRefGoogle Scholar
MiDi, G.D.R. 2004 On dense granular flows. Eur. Phys. J. E 14 (4), 341365.CrossRefGoogle Scholar
Nedderman, R.M., Tüzün, U., Savage, S.B. & Houlsby, G.T. 1982 The flow of granular materials. I. Discharge rates from hoppers. Chem. Engng Sci. 37 (11), 15971609.CrossRefGoogle Scholar
Reddy, A.V.K., Kumar, S. & Reddy, K.A. 2021 Granular particle-shape heterogeneous mixtures discharging through a silo. J. Fluid Mech. 912, A22.CrossRefGoogle Scholar
Rubio-Largo, S.M., Janda, A., Maza, D., Zuriguel, I. & Hidalgo, R.C. 2015 Disentangling the free-fall arch paradox in silo discharge. Phys. Rev. Lett. 114, 238002.CrossRefGoogle ScholarPubMed
Stannarius, R., Martinez, D.S., Finger, T., Somfai, E. & Börzsönyi, T. 2019 Packing and flow profiles of soft grains in 3d silos reconstructed with x-ray computed tomography. Granul. Matt. 21 (3), 56.CrossRefGoogle Scholar
Staron, L., Lagrée, P.-Y. & Popinet, S. 2012 The granular silo as a continuum plastic flow: the hour-glass vs the clepsydra. Phys. Fluids 24 (10), 103301.CrossRefGoogle Scholar
Tighe, B.P. & Sperl, M. 2007 Pressure and motion of dry sand: translation of Hagen's paper from 1852. Granul. Matt. 9 (3), 141144.CrossRefGoogle Scholar
To, K., Yen, Y., Mo, Y.-K. & Huang, J.-R. 2019 Granular flow from silos with rotating orifice. Phys. Rev. E 100, 012906.CrossRefGoogle ScholarPubMed
Van Zuilichem, D.J., Van Egmond, N.D. & De Swart, J.G. 1974 Density behaviour of flowing granular material. Powder Technol. 10 (4–5), 161169.CrossRefGoogle Scholar
Weinhart, T., Labra, C., Luding, S. & Ooi, J.Y. 2016 Influence of coarse-graining parameters on the analysis of DEM simulations of silo flow. Powder Technol. 293, 138148.CrossRefGoogle Scholar
Wójcik, M., Sondej, M., Rejowski, K. & Tejchman, J. 2017 Full-scale experiments on wheat flow in steel silo composed of corrugated walls and columns. Powder Technol. 311, 537555.CrossRefGoogle Scholar
Zhou, Y., Lagrée, P.-Y., Popinet, S., Ruyer, P. & Aussillous, P. 2017 Experiments on, and discrete and continuum simulations of, the discharge of granular media from silos with a lateral orifice. J. Fluid Mech. 829, 459485.CrossRefGoogle Scholar
Zhou, Y., Ruyer, P. & Aussillous, P. 2015 Discharge flow of a bidisperse granular media from a silo: discrete particle simulations. Phys. Rev. E 92, 062204.CrossRefGoogle ScholarPubMed