Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-25T06:06:00.506Z Has data issue: false hasContentIssue false

A global stability analysis of the steady and periodic cylinder wake

Published online by Cambridge University Press:  26 April 2006

Bernd R. Noack
Affiliation:
Max-Planck-Institut für Strömungsforschung, Bunsenstraße 10, D-37 073 Göttingen, Germany
Helmut Eckelmann
Affiliation:
Max-Planck-Institut für Strömungsforschung, Bunsenstraße 10, D-37 073 Göttingen, Germany

Abstract

A global, three-dimensional stability analysis of the steady and the periodic cylinder wake is carried out employing a low-dimensional Galerkin method. The steady flow is found to be asymptotically stable with respect to all perturbations for Re < 54. The onset of periodicity is confirmed to be a supercritical Hopf bifurcation which can be modelled by the Landau equations. The periodic solution is observed to be only neutrally stable for 54 < Re < 170. While two-dimensional perturbations of the vortex street rapidly decay, three-dimensional perturbations with long spanwise wavelengths neither grow nor decay. The periodic solution becomes unstable at Re = 170 by a perturbation with the spanwise wavelength of 1.8 diameters. This instability is shown to be a supercritical Hopf bifurcation in the spanwise coordinate and leads to a three-dimensional periodic flow. Finally the transition scenario for higher Reynolds numbers is discussed.

Type
Research Article
Copyright
© 1994 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ahlborn, B. & Lefrançois, M. 1994 The clockwork of vortex shedding. Phys. Fluids A (submitted).Google Scholar
Albarède, P. & Monkewitz, P. A. 1992 A model for the formation of oblique shedding patterns and ‘chevrons’ in cylinder wakes. Phys. Fluids A 4, 744756.Google Scholar
Albarède, P., Provansal, M. & Boyer, L. 1990 Modélisation par l’équation de Ginzburg-Landau du sillage tridimensionnel d’un obstacle allonge. C.R. Acad. Sci. Paris II 310, 459464.Google Scholar
Brede, M., Eckelmann, H., König, M. & Noack, B. R. 1994 Discrete shedding modes of the cylinder wake in a jet with a homogeneous core. Phys. Fluids A (submitted).Google Scholar
Busse, F. H. 1991 Numerical analysis of secondary and tertiary states of fluid flow and their stability properties. Appl. Sci. Res. 48, 341351.Google Scholar
Clever, R. M. & Busse, F. H. 1990 Convection at very low Prandtl numbers. Phys. Fluids A 2, 334339.Google Scholar
Detemple-Laake, E. & Eckelmann, H. 1989 Phenomenology of Kármán vortex streets in oscillatory flow. Exps. Fluids 7, 217227.Google Scholar
Gerrard, J. H. 1966 The three-dimensional structure of the wake of a circular cylinder. J. Fluid Mech. 25, 143164.Google Scholar
Hama, F. R. 1957 Three-dimensional vortex pattern behind a circular cylinder. J. Aero. Sci. 24, 156158.Google Scholar
Hammache, M. & Gharib, M. 1991 An experimental study of the parallel and oblique vortex shedding from circular cylinders. J. Fluid Mech. 232, 567590.Google Scholar
Huerre, P. & Monkewitz, P. A. 1990 Local and global instabilities in spatially developing flows. Ann. Rev. Fluid Mech. 32, 473537.Google Scholar
Jackson, C. P. 1987 A finite-element study of the onset of vortex shedding in flow past variously shaped bodies. J. Fluid Mech. 182, 2345.Google Scholar
Jordan, D. W. & Smith, P. 1988 Nonlinear Ordinary Differential Equations. Clarendon.
Karniadakis, G. E. & Triantafyllou, G. S. 1992 Three-dimensional dynamics and transition to turbulence in the wake of bluff bodies. J. Fluid Mech. 238, 130.Google Scholar
König, M. 1993 Experimentelle Untersuchung des dreidimensionalen Nachlaufs zylindrische Körper bei kleinen Reynoldszahlen. PhD thesis, Georg-August-Universität, Göttingen.
König, M., Eisenlohr, H. & Eckelmann, H. 1990 The fine structure in the Strouhal-Reynolds number relationship of the laminar wake of a circular cylinder. Phys. Fluids A 2, 16071614.Google Scholar
König, M., Eisenlohr, H. & Eckelmann, H. 1992 Visualization of the spanwise cellular structure of the laminar wake of wall-bounded circular cylinders. Phys. Fluids A 4, 869872.Google Scholar
König, M., Noack, B. R. & Ecklemann, H. 1993 Descrite shedding modes in the von Kármán vortex street. Phys. Fluids A 5, 18461848.Google Scholar
Landau, L. D. & Lifshitz, E. M. 1987 Fluid Mechanics. Pergamon.
Leweke, T., Provansal, M. & Boyer, L. 1993 Sillage tridimensionnel d’un obstacle torique et modélisation par l’équation de Ginzburg-Landau. C.R. Acad. Sci. Paris II, 316, 287292.Google Scholar
Lorenz, E. N. 1963 Deterministic nonperiodic flow. J. Atmos. Sci. 20, 130141.Google Scholar
Morzyński, M. & Thiele, F. 1991 Numerical stability analysis of a flow about a cylinder. Z. Angew. Math. Mech. 71, T424T428.Google Scholar
Noack, B. R. 1990 Untersuchung chaotischer Phänomene in der Nachlaufströmung. Rep. 111/1990. Max-Planck-Institut für Strömungsforschung, Göttingen.
Noack, B. R. 1992 Theoretische Untersuchung der Zylinderumströmung mit einem niedrig-dimensionalen Galerkin-Verfahren. Rep. 25/1992. Mitteilungen des Max-Planck-Instituts für Strömungsforschung, Göttingen.
Noack, B. R. & Eckelmann, H. 1991 Two-dimensional, viscous, incompressible flow around a circular cylinder. Rep. 104/1991. Max-Planck-Institut für Strömungsforschung, Göttingen.
Noack, B. R. & Eckelmann, H. 1992 On chaos in wakes. Physica D 56, 151164.Google Scholar
Noack, B. R. & Eckelmann, H. 1993 Theoretical investigation of the cylinder wake with a low-dimensional Galerkin method. In IUTAM-Symposium on Bluff Body Wakes, Dynamics, and Instability, Göttingen, 7–11 September 1992 (ed. H. Eckelmann, J. M. R. Graham, P. Huerre & P. A. Monkewitz), pp 143146. Springer.
Noack, B. R. & Eckelmann, H. 1994a A low-dimensional Galerkin method for the three-dimensional flow around a circular cylinder. Phys. Fluids 6, 124143.Google Scholar
Noack, B. R. & Eckelmann, H. 1994b Theoretical investigation of the bifurcations and the turbulence attractor of the cylinder wake. Z. Angew Math. Mech. 74, T396T397.Google Scholar
Noack, B. R., König, M. & Eckelmann, H. 1993 Three-dimensional stability analysis of the periodic flow around a circular cylinder. Phys. Fluids A 5, 12791281.Google Scholar
Noack, B. R. & Obermeier, F. 1991 A chaos-theoretical investigation of the wake behind a cylinder. Z. Angew. Math. Mech. 71, T259T261.Google Scholar
Noack, B. R., Ohle, F. & Eckelmann, H. 1991 On cell formation in vortex streets. J. Fluid Mech. 227, 293308.Google Scholar
Oertel, H. 1990 Wakes behind blunt bodies. Ann. Rev. Fluid Mech. 22, 539546, 1990.Google Scholar
Papangelou, A. 1992 Vortex shedding from slender cones at low Reynolds numbers. J. Fluid Mech. 242, 299321.Google Scholar
Patel, V. A. 1978 Kármán vortex street behind a circular cylinder by series truncation method. J. Comput. Phys. 28, 1442.Google Scholar
Press, W. H., Flamery, B. P., Teukolsky, S. A. & Vetterling, W. T. 1986 Numerical Recipes, The Art of Scientific Computing. Cambridge University Press.
Provansal, M., Mathis, C. & Boyer, L. 1987 Bénard-von Kármán instability: transient and forced regimes. J. Fluid Mech. 182, 122.Google Scholar
Roussopoulos, K. 1993 Feedback control of vortex shedding at low Reynolds numbers. J. Fluid Mech. 248, 267296.Google Scholar
Sreenivasan, K. R., Strykowski, P. J. & Olinger, D. J. 1987 Hopf bifurcation, Landau equation, and vortex shedding behind circular cylinders. In Forum on Unsteady Flow Separation (ed. K. N. Ghia), p. 1. ASME FED vol. 52.
Sreenivasan, K. R., Strykowski, P. J. & Olinger, D. J. 1991 On the Hopf bifurcation and Landau-Stuart constants associated with vortex ‘shedding’ behind circular cylinders. Unpublished.
Tomboulides, A. G., Triantafyllou, G. S. & Karniadakis, G. E. 1992 A mechanism of period doubling in free shear flows. Phys. Fluids A 4, 13291332.Google Scholar
Triantafyllou, G. S. 1990 Three-dimensional flow patterns in two-dimensional wakes. In Intl Symp. on Nonsteady Fluid Dynamics, p 395402. ASME.
Williamson, C. H. K. 1988a Defining a universal and continuous Strouhal-Reynolds number relationship for the laminar vortex shedding of a circular cylinder. Phys. Fluids 31, 27422744.Google Scholar
Williamson, C. H. K. 1988b The existence of two stages in the transition to three-dimensionality of a cylinder wake. Phys. Fluids 31, 31653167.Google Scholar
Williamson, C. H. K. 1989 Oblique and parallel modes of vortex shedding in the wake of a circular cylinder at low Reynolds numbers. J. Fluid Mech. 206, 579627.Google Scholar
Zebib, A. 1987 Stability of viscous flow past a circular cylinder. J. Engng Maths 21, 155165.Google Scholar