Hostname: page-component-669899f699-chc8l Total loading time: 0 Render date: 2025-04-24T14:53:24.821Z Has data issue: false hasContentIssue false

The global properties of nocturnal stable atmospheric boundary layers

Published online by Cambridge University Press:  14 November 2024

Zhouxing Shen
Affiliation:
Department of Modern Mechanics, University of Science and Technology of China, Hefei 230027, Anhui, PR China
Luoqin Liu*
Affiliation:
Department of Modern Mechanics, University of Science and Technology of China, Hefei 230027, Anhui, PR China
Xiyun Lu
Affiliation:
Department of Modern Mechanics, University of Science and Technology of China, Hefei 230027, Anhui, PR China
Richard J.A.M. Stevens
Affiliation:
Physics of Fluids Group, Max Planck Center Twente for Complex Fluid Dynamics, J. M. Burgers Center for Fluid Dynamics, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
*
Email address for correspondence: [email protected]

Abstract

Accurate prediction of the global properties of wall-bounded turbulence holds significant importance for both fundamental research and engineering applications. In atmospheric boundary layers, the relationship between friction drag and geostrophic wind is described by the geostrophic drag law (GDL). We use carefully designed large-eddy simulations to study nocturnal stable atmospheric boundary layers (NSBLs), which are characterized by a negative potential temperature flux at the surface and neutral stratification higher up. Our simulations explore a wider range of the Kazanski–Monin parameter, $\mu = L_f / L_s = [16.7, 193.3]$, with $L_f$ the Ekman length scale and $L_s$ the surface Obukhov length. We show collapse of the GDL coefficients onto single curves as functions of $\mu$, thereby validating the GDL's applicability to NSBLs over a very wide $\mu$ range. We show that the boundary-layer height $h$ scales with $\sqrt {L_f L_s}$, while both the streamwise and spanwise wind gradients scale with $u_*^2 / (h^2 f)$, where $u_*$ represents the friction velocity and $f$ the Coriolis parameter. Leveraging these insights, we developed new analytical expressions for the GDL coefficients, significantly enhancing our understanding of the GDL for turbulent boundary layers. These formulations facilitate the analytical prediction of the geostrophic drag coefficient and cross-isobaric angle.

Type
JFM Papers
Copyright
© The Author(s), 2024. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Abkar, M. & Moin, P. 2017 Large eddy simulation of thermally stratified atmospheric boundary layer flow using a minimum dissipation model. Boundary-Layer Meteorol. 165 (3), 405419.CrossRefGoogle ScholarPubMed
Albertson, J.D. 1996 Large eddy simulation of land-atmosphere interaction. PhD thesis, University of California.Google Scholar
Albertson, J.D. & Parlange, M.B. 1999 Surface length-scales and shear stress: implications for land-atmosphere interaction over complex terrain. Water Resour. Res. 35, 21212132.CrossRefGoogle Scholar
Arya, S.P.S. 1975 Geostrophic drag and heat transfer relations for the atmospheric boundary layer. Q. J. R. Meteorol. Soc. 101, 147161.CrossRefGoogle Scholar
Arya, S.P.S. 1978 Comparative effects of stability, baroclinity and the scale-height ratio on drag laws for the atmospheric boundary layer. J. Atmos. Sci. 35 (1), 4046.2.0.CO;2>CrossRefGoogle Scholar
Arya, S.P.S. & Wyngaard, J.C. 1975 Effect of baroclinicity on wind profiles and the geostrophic drag law for the convective planetary boundary layer. J. Atmos. Sci. 32, 767778.2.0.CO;2>CrossRefGoogle Scholar
Basu, S. & Holtslag, A.A.M. 2023 A novel approach for deriving the stable boundary layer height and eddy viscosity profiles from the Ekman equations. Boundary-Layer Meteorol. 187, 105115.CrossRefGoogle Scholar
Basu, S. & Lacser, A. 2017 A cautionary note on the use of Monin–Obukhov similarity theory in very high-resolution large-eddy simulations. Boundary-Layer Meteorol. 163 (2), 351355.CrossRefGoogle Scholar
Beare, R.J., et al. 2006 An intercomparison of large eddy simulations of the stable boundary layer. Boundary-Layer Meteorol. 118, 247272.CrossRefGoogle Scholar
Berger, B.W. & Grisogono, B. 1998 The baroclinic, variable eddy viscosity Ekman layer. Boundary-Layer Meteorol. 87, 363380.CrossRefGoogle Scholar
Blackadar, A.K. & Tennekes, H. 1968 Asymptotic similarity in neutral barotropic planetary boundary layers. J. Atmos. Sci. 25 (6), 10151020.2.0.CO;2>CrossRefGoogle Scholar
Businger, J.A., Wyngaard, J.C., Izumi, Y. & Bradley, E.F. 1971 Flux-profile relationships in the atmospheric surface layer. J. Atmos. Sci. 28 (2), 181189.2.0.CO;2>CrossRefGoogle Scholar
Byun, D.W. 1991 Determination of similarity functions of the resistance laws for the planetary boundary layer using surface-layer similarity functions. Boundary-Layer Meteorol. 57 (1), 1748.CrossRefGoogle Scholar
Caughey, S.J., Wyngaard, J.C. & Kaimal, J.C. 1979 Turbulence in the evolving stable boundary layer. J. Atmos. Sci. 36, 10411052.Google Scholar
Chinita, M.J., Matheou, G. & Miranda, P.M.A. 2022 Large-eddy simulation of very stable boundary layers. Part I. Modeling methodology. Q. J. R. Meteorol. Soc. 148, 18051823.CrossRefGoogle Scholar
Chung, D., Hutchins, N., Schultz, M.P. & Flack, K.A. 2021 Predicting the drag of rough surfaces. Annu. Rev. Fluid Mech. 53, 439471.CrossRefGoogle Scholar
Constantin, A. & Johnson, R.S. 2019 Atmospheric Ekman flows with variable eddy viscosity. Boundary-Layer Meteorol. 170, 395414.CrossRefGoogle Scholar
Cooke, J., Jerolmack, D. & Park, G.I. 2024 Mesoscale structure of the atmospheric boundary layer across a natural roughness transition. Proc. Natl Acad. Sci. USA 121, e2320216121.CrossRefGoogle ScholarPubMed
Couvreux, F., et al. 2020 Intercomparison of large-eddy simulations of the antarctic boundary layer for very stable stratification. Boundary-Layer Meteorol. 176, 369400.CrossRefGoogle Scholar
Dai, Y., Basu, S., Maronga, B. & de Roode, S.R. 2021 Addressing the grid-size sensitivity issue in large-eddy simulations of stable boundary layers. Boundary-Layer Meteorol. 178, 6389.CrossRefGoogle Scholar
Delage, Y. 1997 Parameterising sub-grid scale vertical transport in atmospheric models under statically stable conditions. Boundary-Layer Meteorol. 82, 2348.CrossRefGoogle Scholar
Derbyshire, S.H. 1990 Nieuwstadt's stable boundary layer revisited. Q. J. R. Meteorol. Soc. 116, 127158.CrossRefGoogle Scholar
van Dop, H. & Axelsen, S. 2007 Large eddy simulation of the stable boundary-layer: a retrospect to Nieuwstadt's early work. Flow Turbul. Combust. 79, 235249.CrossRefGoogle Scholar
Dougherty, J.P. 1961 The anisotropy of turbulence at the meteor level. J. Atmos. Terr. Phys. 21 (2), 210213.CrossRefGoogle Scholar
Ekman, V.W. 1905 On the influence of the Earth's rotation on ocean-currents. Ark. Mat. Astron. Fys. 2, 152.Google Scholar
Ellison, T.H. 1955 The Ekman spiral. Q. J. R. Meteorol. Soc. 81 (350), 637638.CrossRefGoogle Scholar
Fernando, H.J.S. & Weil, J.C. 2010 Whither the stable boundary layer? Bull. Am. Meteor. Soc. 91, 14751484.CrossRefGoogle Scholar
Floors, R., Peña, A. & Gryning, S.-E. 2015 The effect of baroclinicity on the wind in the planetary boundary layer. Q. J. R. Meteorol. Soc. 141, 619630.CrossRefGoogle Scholar
Gadde, S.N., Stieren, A. & Stevens, R.J.A.M. 2021 Large-eddy simulations of stratified atmospheric boundary layers: comparison of different subgrid models. Boundary-Layer Meteorol. 178 (3), 363382.CrossRefGoogle Scholar
Garratt, J.R. 1983 Surface influence upon vertical profiles in the nocturnal boundary layer. Boundary-Layer Meteorol. 26 (1), 6980.CrossRefGoogle Scholar
Grachev, A.A., Andreas, E.L., Fairall, C.W., Guest, P.S. & Persson, P.O.G. 2013 The critical Richardson number and limits of applicability of local similarity theory in the stable boundary layer. Boundary-Layer Meteorol. 147, 5182.CrossRefGoogle Scholar
Grachev, A.A., Fairall, C.W., Persson, P.O.G., Andreas, E.L. & Guest, P.S. 2005 Stable boundary-layer scaling regimes: the SHEBA data. Boundary-Layer Meteorol. 116, 201235.CrossRefGoogle Scholar
Grisogono, B. 1995 A generalized Ekman layer profile with gradually varying eddy diffusivities. Q. J. R. Meteorol. Soc. 121, 445453.CrossRefGoogle Scholar
Gryning, S.-E., Batchvarova, E., Brümmer, B., Jørgensen, H. & Larsen, S. 2007 On the extension of the wind profile over homogeneous terrain beyond the surface boundary layer. Boundary-Layer Meteorol. 124 (2), 251268.CrossRefGoogle Scholar
Hess, G.D. 2004 The neutral, barotropic planetary boundary layer, capped by a low-level inversion. Boundary-Layer Meteorol. 110 (3), 319355.CrossRefGoogle Scholar
Huang, J. & Bou-Zeid, E. 2013 Turbulence and vertical fluxes in the stable atmospheric boundary layer. Part I. A large-eddy simulation study. J. Atmos. Sci. 70, 15131527.CrossRefGoogle Scholar
Kadantsev, E., Mortikov, E. & Zilitinkevich, S. 2021 The resistance law for stably stratified atmospheric planetary boundary layers. Q. J. R. Meteorol. Soc. 147, 22332243.CrossRefGoogle Scholar
Katul, G.G., Konings, A.G. & Porporato, A. 2011 Mean velocity profile in a sheared and thermally stratified atmospheric boundary layer. Phys. Rev. Lett. 107 (26), 268502.CrossRefGoogle Scholar
Kazanski, A.B. & Monin, A.S. 1961 On the dynamic interaction between the atmosphere and the Earth's surface. Izv. Acad. Sci. USSR Geophys. Ser. Engl. Transl. 5, 514515.Google Scholar
Kelly, M. & Gryning, S.-E. 2010 Long-term mean wind profiles based on similarity theory. Boundary-Layer Meteorol. 136, 377390.CrossRefGoogle Scholar
Kim, J. & Leonard, A. 2024 The early days and rise of turbulence simulation. Annu. Rev. Fluid Mech. 56, 2144.CrossRefGoogle Scholar
Klemp, J.B. & Lilly, D.K. 1978 Numerical simulation of hydrostatic mountain waves. J. Atmos. Sci. 68, 4650.Google Scholar
Krishna, K. 1980 The planetary-boundary-layer model of Ellison (1956) – a retrospect. Boundary-Layer Meteorol. 19 (3), 293301.CrossRefGoogle Scholar
Lacser, A. & Arya, S.P.S. 1986 A numerical model study of the structure and similarity scaling of the nocturnal boundary layer (NBL). Boundary-Layer Meteorol. 35, 369385.CrossRefGoogle Scholar
LeMone, M.A., et al. 2019 100 years of progress in boundary layer meteorology. Meteorol. Monogr. 59, 9.19.85.CrossRefGoogle Scholar
Lenschow, D.H., Li, X.S., Zhu, C.J. & Stankov, B.B. 1988 The stably stratified boundary layer over the great plains. I. Mean and turbulence structure. Boundary-Layer Meteorol. 42, 95121.CrossRefGoogle Scholar
Lin, C.C. & Segel, L.A. 1988 Mathematics Applied to Deterministic Problems in the Natural Sciences. Society for Industrial and Applied Mathematics.CrossRefGoogle Scholar
Liu, L., Gadde, S.N. & Stevens, R.J.A.M. 2021 a Geostrophic drag law for conventionally neutral atmospheric boundary layers revisited. Q. J. R. Meteorol. Soc. 147, 847857.CrossRefGoogle Scholar
Liu, L., Gadde, S.N. & Stevens, R.J.A.M. 2021 b Universal wind profile for conventionally neutral atmospheric boundary layers. Phys. Rev. Lett. 126, 104502.CrossRefGoogle ScholarPubMed
Liu, L., Gadde, S.N. & Stevens, R.J.A.M. 2023 The mean wind and potential temperature flux profiles in convective boundary layers. J. Atmos. Sci. 80 (8), 18931903.CrossRefGoogle Scholar
Liu, L., Lu, X. & Stevens, R.J.A.M. 2024 Geostrophic drag law in conventionally neutral atmospheric boundary layer: simplified parametrization and numerical validation. Boundary-Layer Meteorol. 190 (8), 37.CrossRefGoogle Scholar
Liu, L. & Stevens, R.J.A.M. 2021 Effects of atmospheric stability on the performance of a wind turbine located behind a three-dimensional hill. Renew. Energy 175, 926935.CrossRefGoogle Scholar
Liu, L. & Stevens, R.J.A.M. 2022 Vertical structure of conventionally neutral atmospheric boundary layers. Proc. Natl Acad. Sci. USA 119, e2119369119.CrossRefGoogle ScholarPubMed
Mahrt, L. 2014 Stably stratified atmospheric boundary layers. Annu. Rev. Fluid Mech. 46, 2345.CrossRefGoogle Scholar
Maronga, B., Knigge, C. & Raasch, S. 2020 An improved surface boundary condition for large-eddy simulations based on Monin–Obukhov similarity theory: evaluation and consequences for grid convergence in neutral and stable conditions. Boundary-Layer Meteorol. 174, 297325.CrossRefGoogle Scholar
Maronga, B. & Li, D. 2022 An investigation of the grid sensitivity in large-eddy simulations of the stable boundary layer. Boundary-Layer Meteorol. 182, 251273.CrossRefGoogle Scholar
Marusic, I. & Monty, J.P. 2019 Attached eddy model of wall turbulence. Annu. Rev. Fluid Mech. 51 (1), 4974.CrossRefGoogle Scholar
Marusic, I., Monty, J.P., Hultmark, M. & Smits, A.J. 2013 On the logarithmic region in wall turbulence. J. Fluid Mech. 716, R3.CrossRefGoogle Scholar
Moeng, C.-H. 1984 A large-eddy simulation model for the study of planetary boundary-layer turbulence. J. Atmos. Sci. 41, 20522062.2.0.CO;2>CrossRefGoogle Scholar
Momen, M. & Bou-Zeid, E. 2017 Mean and turbulence dynamics in unsteady Ekman boundary layers. J. Fluid Mech. 816, 209242.CrossRefGoogle Scholar
Momen, M., Bou-Zeid, E., Parlange, M.B. & Giometto, M. 2018 Modulation of mean wind and turbulence in the atmospheric boundary layer by baroclinicity. J. Atmos. Sci. 75, 37973821.CrossRefGoogle Scholar
Monin, A.S. & Obukhov, A.M. 1954 Basic laws of turbulent mixing in the surface layer of the atmosphere. Tr. Akad. Nauk SSSR Geophiz. Inst. 24 (151), 163187.Google Scholar
Narasimhan, G., Gayme, D.F. & Meneveau, C. 2024 Analytical model coupling Ekman and surface layer structure in atmospheric boundary layer flows. Boundary-Layer Meteorol. 190, 16.CrossRefGoogle Scholar
Nieuwstadt, F.T.M. 1983 On the solution of the stationary, baroclinic Ekman-layer equations with a finite boundary-layer height. Boundary-Layer Meteorol. 26, 377390.CrossRefGoogle Scholar
Nieuwstadt, F.T.M. 1984 The turbulent structure of the stable, nocturnal boundary layer. J. Atmos. Sci. 41 (14), 22022216.2.0.CO;2>CrossRefGoogle Scholar
Obukhov, A.M. 1946 Turbulence in an atmosphere with inhomogeneous temperature. Trans. Inst. Teoret. Geoz. Akad. Nauk SSSR 1, 95115.Google Scholar
Ozmidov, R.V. 1965 On the turbulent exchange in a stably stratified ocean. Izv. Acad. Sci. USSR Atmos. Ocean. Phys. 1 (8), 853860.Google Scholar
Pope, S.B. 2000 Turbulent Flows. Cambridge University Press.Google Scholar
Ricco, P. & Skote, M. 2022 Integral relations for the skin-friction coefficient of canonical flows. J. Fluid Mech. 943, A50.CrossRefGoogle Scholar
Rossby, C.G. & Montgomery, R.B. 1935 The layers of frictional influence in wind and ocean currents. Pap. Phys. Oceanogr. Meteor. 3 (3), 1101.Google Scholar
Salesky, S.T., Chamecki, M. & Bou-Zeid, E. 2017 On the nature of the transition between roll and cellular organization in the convective boundary layer. Boundary-Layer Meteorol. 163, 4168.CrossRefGoogle Scholar
Schmid, M.F., Lawrence, G.A., Parlange, M.B. & Giometto, M.G. 2019 Volume averaging for urban canopies. Boundary-Layer Meteorol. 173 (3), 349372.CrossRefGoogle ScholarPubMed
Schultz, M.P., Bendick, J.A., Holm, E.R. & Hertel, W.M. 2011 Economic impact of biofouling on a naval surface ship. Biofouling 27, 8798.CrossRefGoogle ScholarPubMed
Shah, S.K. & Bou-Zeid, E. 2014 Direct numerical simulations of turbulent Ekman layers with increasing static stability: modifications to the bulk structure and second-order statistics. J. Fluid Mech. 760, 494539.CrossRefGoogle Scholar
Smits, A.J. 2022 Batchelor prize lecture: measurements in wall-bounded turbulence. J. Fluid Mech. 940, A1.CrossRefGoogle Scholar
Smits, A.J., McKeon, B.J. & Marusic, I. 2011 High Reynolds number wall turbulence. Annu. Rev. Fluid Mech. 43, 353375.CrossRefGoogle Scholar
Sorbjan, Z. 1986 On similarity in the atmospheric boundary layer. Boundary-Layer Meteorol. 34 (4), 377397.CrossRefGoogle Scholar
Spalart, P.R. & McLean, J.D. 2011 Drag reduction: enticing turbulence, and then an industry. Phil. Trans. R. Soc. A 369, 15561569.CrossRefGoogle ScholarPubMed
Stiperski, I. & Calaf, M. 2018 Dependence of near-surface similarity scaling on the anisotropy of atmospheric turbulence. Q. J. R. Meteorol. Soc. 144, 641657.CrossRefGoogle ScholarPubMed
Stoll, R., Gibbs, J.A., Salesky, S.T., Anderson, W. & Calaf, M. 2020 Large-eddy simulation of the atmospheric boundary layer. Boundary-Layer Meteorol. 177, 541581.CrossRefGoogle Scholar
Stoll, R. & Porté-Agel, F. 2008 Large-eddy simulation of the stable atmospheric boundary layer using dynamic models with different averaging schemes. Boundary-Layer Meteorol. 126, 128.CrossRefGoogle Scholar
Stull, R.B. 1988 An Introduction to Boundary Layer Meteorology. Kluwer Academic.CrossRefGoogle Scholar
Sullivan, P.P., Weil, J.C., Patton, E.G., Jonker, H.J.J. & Mironov, D.V. 2016 Turbulent winds and temperature fronts in large-eddy simulations of the stable atmospheric boundary layer. J. Atmos. Sci. 73 (4), 18151840.CrossRefGoogle Scholar
Tennekes, H. 1973 The logarithmic wind profile. J. Atmos. Sci. 30 (2), 234238.2.0.CO;2>CrossRefGoogle Scholar
Tennekes, H. & Lumley, J.L. 1972 A First Course in Turbulence. MIT Press.CrossRefGoogle Scholar
Tong, C. & Ding, M. 2020 Velocity-defect laws, log law and logarithmic friction law in the convective atmospheric boundary layer. J. Fluid Mech. 883, A36.CrossRefGoogle Scholar
Townsend, A.A. 1976 Structure of Turbulent Shear Flow, 2nd edn. Cambridge University Press.Google Scholar
Van de Wiel, B.J.H., Moene, A.F., Steeneveld, G.J., Baas, P., Bosveld, F.C. & Holtslag, A.A.M. 2010 A conceptual view on inertial oscillations and nocturnal low-level jets. J. Atmos. Sci. 67, 26792689.CrossRefGoogle Scholar
Vickers, D. & Mahrt, L. 2004 Evaluating formulations of stable boundary layer height. J. Appl. Meteorol. 43, 17361749.CrossRefGoogle Scholar
Vreman, B., Geurts, B. & Kuerten, H. 1994 On the formulation of the dynamic mixed subgrid-scale model. Phys. Fluids 6, 40574059.CrossRefGoogle Scholar
Wittich, K.P. 1991 The nocturnal boundary layer over Northern Germany: an observational study. Boundary-Layer Meteorol. 55, 4766.CrossRefGoogle Scholar
Wyngaard, J.C. & Coté, O.R. 1972 Cospectral similarity in the atmospheric surface layer. Q. J. R. Meteorol. Soc. 98, 590603.CrossRefGoogle Scholar
Yokoyama, O., Gamo, M. & Yamamoto, S. 1979 The vertical profiles of the turbulence quantities in the atmospheric boundary layer. J. Meteorol. Soc. Japan 57, 264272.CrossRefGoogle Scholar
Zilitinkevich, S.S. 1969 On the computation of the basic parameters of the interaction between the atmosphere and the ocean. Tellus 21 (1), 1724.CrossRefGoogle Scholar
Zilitinkevich, S.S. 1972 On the determination of the height of the Ekman boundary layer. Boundary-Layer Meteorol. 3, 141145.CrossRefGoogle Scholar
Zilitinkevich, S.S. 1975 Resistance laws and prediction equations for the depth of the planetary boundary layer. J. Atmos. Sci. 32 (4), 741752.2.0.CO;2>CrossRefGoogle Scholar
Zilitinkevich, S.S. 1989 a The temperature profile and heat transfer law in a neutrally and stably stratified planetary boundary layer. Boundary-Layer Meteorol. 49, 15.CrossRefGoogle Scholar
Zilitinkevich, S.S. 1989 b Velocity profiles, the resistance law and the dissipation rate of mean flow kinetic energy in a neutrally and stably stratified planetary boundary layer. Boundary-Layer Meteorol. 46 (4), 367387.CrossRefGoogle Scholar
Zilitinkevich, S.S. & Deardorff, J.W. 1974 Similarity theory for the planetary boundary layer of time-dependent height. J. Atmos. Sci. 31 (5), 14491452.2.0.CO;2>CrossRefGoogle Scholar
Zilitinkevich, S.S. & Esau, I.N. 2002 On integral measures of the neutral barotropic planetary boundary layer. Boundary-Layer Meteorol. 104 (3), 371379.CrossRefGoogle Scholar
Zilitinkevich, S.S. & Esau, I.N. 2005 Resistance and heat-transfer laws for stable and neutral planetary boundary layers: old theory advanced and re-evaluated. Q. J. R. Meteorol. Soc. 131 (609), 18631892.CrossRefGoogle Scholar
Zilitinkevich, S.S., Esau, I. & Baklanov, A. 2007 Further comments on the equilibrium height of neutral and stable planetary boundary layers. Q. J. R. Meteorol. Soc. 133 (622), 265271.CrossRefGoogle Scholar
Zilitinkevich, S., Johansson, P.E., Mironov, D.V. & Baklanov, A. 1998 A similarity-theory model for wind profile and resistance law in stably stratified planetary boundary layers. J. Wind Engng Ind. Aerodyn. 74–76, 209218.CrossRefGoogle Scholar