Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-25T06:20:15.907Z Has data issue: false hasContentIssue false

Geometric properties of deep-water breaking waves

Published online by Cambridge University Press:  26 April 2006

P. Bonmarin
Affiliation:
Institut de Mécanique Statistique de la Turbulence, Unité Mixte Université/C.N.R.S. n° 380033, 12, Avenue du Général Leclerc - 13003 Marseille, France

Abstract

The time-space evolution of a steep water wave reaching the breaking stage is observed by means of a visualization technique. In particular, the asymmetry of the wave profile in the near-breaking region is displayed. Measurements at breaking onset on a sample of breaking waves show a relation between the rate of asymmetry growth and the breaker type. The shape evolution of a plunging crest after breaking has started, and the related splash-up phenomenon and its part in the air-entrainment process are also observed.

Type
Research Article
Copyright
© 1989 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Biesel, F. 1952 Study of wave propagation in water of gradually varying depth. Natl Bur of Stand. Circ. 521, p. 243.Google Scholar
Cokelet, E. D. 1979 Breaking waves - the plunging jet and interior flow field. In Mechanics of Wave Induced Forces on Cylinders (ed. T. L. Shaw), p. 284. San Franciso: Pitman.
Duncan, J. H. 1981 An experimental investigation of breaking wave produced by a towed hydrofoil. Proc. R. Soc. Lond. A 377, 331.Google Scholar
Duncan, J. H. 1983 The breaking and non-breaking wave resistance of a two-dimensional hydrofoil. J. Fluid Mech. 126, 507.Google Scholar
Flick, R. E., Guza, R. T. & Inman, D. L. 1981 Elevation and velocity measurements of laboratory shoaling waves. J. Geophys. Res. 86, 4149.Google Scholar
Galvin, C. J. 1968 Breaker type classification on three laboratory beaches. J. Geophys. Res. 73, 3651.Google Scholar
Galvin, C. J. 1972 Wave breaking in shallow water, wave on beaches and resulting sediment transport. In Waves on Beaches and Resulting Sediment Transport (ed. R. E. Meyer), p. 413. Academic.
Greenhow, M. 1983 Free-surface flows related to breaking waves. J. Fluid Mech. 134, 259.Google Scholar
Hansen, J. B. & Svendsen, I. A. 1979 Regular waves in shoaling water, experimental data. Inst. of Hydrodyn. Hydraul. Eng. Techn. Univ. Denmark, Paper 21.Google Scholar
Hedges, T. S. & Kirkgoz, M. S. 1981 An experimental study of the transformation zone of plunging breakers. Coastal Engng 4, 319.Google Scholar
Hotta, S. & Mizuguchi, M. 1980 A field study of waves in the surf zone. Coastal Engng Japan 23, 59.Google Scholar
Iversen, H. W. 1953 Waves and breakers in shoaling water. In Proc. 3rd Conf. on Coastal Eng., Council on wave research Berkeley, chap. 1, p. 1.
Jansen, P. A. 1986a The period-doubling of gravity-capillary waves. J. Fluid Mech. 172, 531.Google Scholar
Jansen, P. A. 1986b Laboratory observations of the kinematics in the aerated region of breaking waves. Coastal Engng 9, 453.Google Scholar
Kharif, C. 1983 Calcul numérique de la déformation d'une onde de surface. Rapport DRET/IMST 83/366.Google Scholar
Kjeldsen, S. P. & Myrhaug, D. 1978 Kinematics and dynamics of breaking waves. Rep. STF60 A78100, Ships in Rough Seas, Part 4. Norwegian Hydrodynamic Laboratories, Trondheim, Norway.
Kjeldsen, S. P. & Myrhaug, D. 1979 Wave-wave interactions and wave-current interactions in deep water. Proc. 5th POAC Conf. Trondheim, vol. III, p. 179.Google Scholar
Koga, M. 1986 Characteristic features of wind wave field with occasional breaking and splashing droplets at high winds. In Oceanic Whitecap and the Role in Air-Sea Exchange Processes (ed. E. C. Monahan & G. McNiocaill), p. 129. D. Reidel.
Longuet-Higgins, M. S. 1980 On the forrming of sharp corners at a free surface. Proc. R. Soc. Lond. A 371, 453.Google Scholar
Longuet-Higgins, M. S. 1982 Parametric solutions for breaking waves. J. Fluid Mech. 121, 403.Google Scholar
Longuet-Higgins, M. S. 1983 Rotating hyperbolic flow: particle trajectories and parametric representation. Q. J. Appl. Maths 36, 247.Google Scholar
Longuet-Higgins, M. S. & Cokelet, E. D. 1976 The deformation of steep surface waves on water. I: A numerical method of computation. Proc. R. Soc. Lond. A 350, 1.Google Scholar
Longuet-Higgins, M. S. & Cokelet, E. D. 1978 The deformation of steep surface waves on water. II: Growth of normal-mode instabilites. Proc. R. Soc. Lond. A 364, 1.Google Scholar
Longuet-Higgins, M. S. & Fox, M. J. H. 1978 Theory of the almost highest wave. Part 2. Matching and analytic extension. J. Fluid Mech. 85, 769.Google Scholar
McIver, P. & Peregrine, D. H. 1981 Comparison of numerical and analytical results for waves that are starting to break. Hydrodynamics in Ocean Engineering, p. 203. Norv. Inst. Techn.
Mason, M. A. 1952 Some observations of breaking waves. Gravity Waves. Natl Bur. Stand. Circ. 521, p. 215.Google Scholar
Melville, W. K. 1982 The instability and breaking of deep-water waves. J. Fluid Mech. 115, 165.Google Scholar
Merlivat, I. & Memery, L. 1983 Gas exchange across an air-water interface: Experimental results and modeling of bubble contribution to transfer. J. Geophys. Res. 88, 707.Google Scholar
New, A. L. 1983 A class of elliptical free-surface flows. J. Fluid Mech. 130, 219.Google Scholar
Ochi, M. K. & Tsai, C. H. 1983 Prediction of occurrence of breaking waves in deep water. J. Phys. Oceanogr. 13, 2008.Google Scholar
Peregrine, D. H. 1981 The fascination of fluid mechanics. J. Fluid Mech. 106, 59.Google Scholar
Peregrine, D. H. 1983 Breaking waves on beaches. Ann. Rev. Fluid Mech. 15, 149.Google Scholar
Peregrine, D. H., Cokelet, E. D. & McIver, P. 1980 The fluid mechanics of waves approaching breaking. Proc. 17th Conf. Coastal Engng. ASCE.
Price, R. K. 1971 The breaking of water waves. J. Geophys. Res. 76, 1576.Google Scholar
Ramberg, S. E., Barber, M. E. & Griffin, O. M. 1985 Laboratory studies of steep and breaking deep water waves in a convergent channel. NRL Rep. 5610.Google Scholar
Ramberg, S. E. & Griffin, O. M. 1986 A laboratory study of steep and breaking: deep water waves. Proc. ASCE. J. Waterways, Port, Coastal Ocean Div. 113, 493.Google Scholar
Schultz, W. W. 1985 Integral equation algorithm for breaking waves. Proc. Eleventh IMACS World Congress, Oslo, vol. 2, p. 219.Google Scholar
Stokes, G. G. 1880 Considerations relative to the greatest height of oscillatory irrotational waves which can be propagated without change of form. Mathematical and Physical Papers, vol. 1, p. 225.Google Scholar
Su, M. Y., Bergin, M., Marler, P. & Myrick, R. 1982 Experiments on nonlinear instabilities and evolution of steep gravity-wave trains. J. Fluid Mech. 124, 45.Google Scholar
Suhayda, J. N. & Pettigrew, N. R. 1977 Observations of wave height and wave celerity in the surf zone. J. Geophys. Res. 82, 1419.Google Scholar
VanDorn, W. G. 1978 Breaking invariants in shoaling waves. J. Geophys. Res. 83, 2981.Google Scholar
Van Dorn, W. G. & Pazan, S. E. 1975 Laboratory investigation of wave breaking. Scripps Institution of Oceanography Rep. 75–21, AD A013 336.Google Scholar
Vinje, T. & Brevig, P. 1981a Breaking waves on water of finite depth. A numerical study. Ship Research Institute of Norway, Rep. R-111-81.Google Scholar
Vinje, T. & Brevig, P. 1981b Numerical simulation of breaking waves. Adv. Water Resources 4, 77.Google Scholar