Hostname: page-component-78c5997874-dh8gc Total loading time: 0 Render date: 2024-11-05T10:16:14.783Z Has data issue: false hasContentIssue false

General dynamical sharp-interface conditions for phase transformations in viscous heat-conducting fluids

Published online by Cambridge University Press:  22 May 2007

DANIEL M. ANDERSON
Affiliation:
Department of Mathematical Sciences, George Mason University, Fairfax, VA 22030-4422, USA
PAOLO CERMELLI
Affiliation:
Dipartimento di Matematica, Università di Torino, Via Carlo Alberto 10, 10123 Torino, Italy
ELIOT FRIED
Affiliation:
Department of Mechanical and Aerospace Engineering, Washington University in St Louis, St Louis, MO 63130-4899, USA
MORTON E. GURTIN
Affiliation:
Department of Mathematical Sciences, Carnegie Mellon University, Pittsburgh, PA 15213-3890, USA
GEOFFREY B. MCFADDEN
Affiliation:
Mathematical and Computational Sciences Division, National Institute of Standards and Technology, Gaithersburg, MD 20899-8910, USA

Abstract

We develop a complete set of equations governing the evolution of a sharp interface separating two fluid phases undergoing transformation. In addition to the conventional balances for mass, linear momentum and energy these equations include also a counterpart of the Gibbs–Thomson equation familiar from theories for crystal growth. This additional equation arises from a consideration of configurational forces within a thermodynamical framework. Although the notion of configurational forces is well-developed and understood for the description of materials, such as crystalline solids, that possess natural reference configurations, little has been done regarding their role in materials, such as viscous fluids, that do not possess preferred reference states. We therefore provide a comprehensive discussion of configurational forces, the balance of configurational momentum, and configurational thermodynamics that does not require a choice of reference configuration. The general evolution equations arising from our theory account for the thermodynamic structure of the bulk phases and the interface and for viscous and thermal dissipation in the bulk phases and for viscous dissipation on the interface. Because of the complexity of these equations, we provide a reduced system of equations based on simplified constitutive assumptions and approximations common in the literature on phase transformations. Using these reduced equations, we apply the theory to the radially symmetric problem for the condensation of a liquid drop into the vapour phase.

Type
Papers
Copyright
Copyright © Cambridge University Press 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Anderson, D. M., McFadden, G. B. & Wheeler, A. A. 1998 Diffuse-interface methods in fluid mechanics. Annu. Rev. Fluid Mech. 30, 139165.CrossRefGoogle Scholar
Anderson, D. M., McFadden, G. B. & Wheeler, A. A. 2000 A phase-field model of solidification with convection. Physica D 135, 175194.Google Scholar
Anderson, D. M., McFadden, G. B. & Wheeler, A. A. 2001 A phase-field model with convection: sharp-interface asymptotics. Physica D 151, 305331.Google Scholar
Angenent, S. & Gurtin, M. E. 1989 Multiphase thermomechanics with interfacial structure 2. Evolution of an isothermal interface. Arch. Rat. Mech. Anal. 108, 323391.CrossRefGoogle Scholar
Burelbach, J. P., Bankoff, S. G. & Davis, S. H. 1988 Nonlinear stability of evaporating/condensing liquid films. J. Fluid Mech. 195, 463494.CrossRefGoogle Scholar
Caginalp, G. 1986 An analysis of a phase field model of a free boundary. Arch. Rat. Mech. Anal. 92, 205245.CrossRefGoogle Scholar
Caginalp, G. 1989 Stefan and Hele-Shaw type models as asymptotic limits of the phase-field equations. Phys. Rev. A 39, 58875896.CrossRefGoogle ScholarPubMed
Callen, H. B. 1960 Thermodynamics. Wiley.Google Scholar
Cermelli, P. & Fried, E. 1997 The influence of inertia on the configurational forces in a deformable solid. Proc. R. Soc. Lond. A 453, 19151927.CrossRefGoogle Scholar
Cermelli, P., Fried, E. & Gurtin, M. E 2005 Transport relations for surface integrals arising in the formulation of balance laws for evolving fluid interfaces. J. Fluid Mech. 544, 339351.CrossRefGoogle Scholar
Chandrasekhar, S. 1961 Hydrodynamic and Hydromagnetic Stability. Oxford University Press.Google Scholar
Collins, J.B. & Levine, H. 1985 Diffuse interface model of diffusion-limited crystal growth. Phys. Rev. B 31, 61196122.CrossRefGoogle ScholarPubMed
Coriell, S. R. & Turnbull, D. 1982 Relative roles of heat transport and interface rearrangement rates in the rapid growth of crystals in undercooled melts. Acta Metall. 30, 21352139.CrossRefGoogle Scholar
Danov, K. D., Alleborn, N., Raszillier, H. & Durst, F. 1998 The stability of evaporating thin liquid films in the presence of surfactant. I. Lubrication approximation and linear analysis. Phys. Fluids 10, 131143.CrossRefGoogle Scholar
Edwards, D. A., Brenner, H. & Wasan, D. T. 1991 Interfacial Transport Processes and Rheology. Butterworth-Heinemann.Google Scholar
Eshelby, J.D. 1951 The force on an elastic singularity. Phil. Trans. R. Soc. Lond. A 244, 87112.Google Scholar
Eshelby, J. D. 1956 The continuum theory of lattice defects. In Progress in Solid State Physics 3 (ed. Turnbull, F. Seitz D.). Academic.Google Scholar
Eshelby, J. D. 1970 Energy relations and the energy-momentum tensor in continuum mechanics. In Inelastic Behavior of Solids (ed. Kanninen, M. F., Alder, W. F., Rosenfield, A. R. & Jaffe, R. I.). McGraw-Hill.Google Scholar
Eshelby, J. D. 1975 The elastic energy-momentum tensor. J. Elasticity 5, 321335.CrossRefGoogle Scholar
Frank, F. C. 1950 Radially symmetric phase growth controlled by diffusion. Proc. R. Soc. Lond. A 201, 586599.Google Scholar
Frank, F. C. 1958 On the kinematic theory of crystal growth and dissolution processes. In Growth and Perfection of Crystals (ed. Doremus, R. H., Roberts, B. W. & Turnbull, D.), Wiley.Google Scholar
Fried, E. 1995 Energy release, friction, and supplemental relations at phase interfaces. Continuum Mech. Thermodyn. 7, 111121.CrossRefGoogle Scholar
Fried, E. & Gurtin, M. E. 1993 Continuum theory of thermally induced phase transitions based on an order parameter. Physica D 68, 326342.Google Scholar
Fried, E. & Gurtin, M. E. 1999 Coherent solid-state phase transitions with atomic diffusion: a thermomechanical treatment. J. Statist. Phys. 95, 13611427.CrossRefGoogle Scholar
Gurtin, M. E. 1988 Multiphase thermomechanics with interfacial structure 1. Heat conduction and the capillary balance law. Arch. Rat. Mech. Anal. 104, 185221.CrossRefGoogle Scholar
Gurtin, M. E. 1995 The nature of configurational forces. Arch. Rat. Mech. Anal. 131, 67100.CrossRefGoogle Scholar
Gurtin, M. E. 2000 Configurational Forces as Basic Concepts of Continuum Physics. Springer.Google Scholar
Gurtin, M. E. & Struthers, A. 1990 Multiphase thermomechanics with interfacial structure 3. Evolving phase boundaries in the presence of bulk deformation. Arch. Rat. Mech. Anal. 112, 97160.CrossRefGoogle Scholar
Gurtin, M. E., Struthers, A. & Williams, W. O. 1989 A transport theorem for moving interfaces. Q. Appl. Maths 47, 773777.CrossRefGoogle Scholar
Herring, C. 1951 Surface tension as a motivation for sintering. In The Physics of Powder Metallurgy (ed. Kingston, W. E.). McGraw-Hill.Google Scholar
Hickman, K. C. D. 1952 Surface behavior in the pot still. Ind. Engng Chem. 44, 18921902.CrossRefGoogle Scholar
Hickman, K. 1972 Torpid phenomena and pump oils. J. Vacuum Sci. Technol. 9, 960976.CrossRefGoogle Scholar
Howison, S. D. 1988 Similarity solutions to the Stefan problem and the binary alloy problem. IMA J. Appl. Maths 40, 147161.CrossRefGoogle Scholar
Joseph, D. D. & Renardy, Y. 1993 Fundamentals of Two-Fluid Dynamics. Part 1: Mathematical Theory and Applications. Springer.Google Scholar
Krukowski, S. & Turski, L. A. 1982 Time-dependent solution for spherically symmetric freezing precipitate. J. Cryst. Growth 58, 631635.CrossRefGoogle Scholar
Lamé, G. & Clapeyron, B. P. 1831 Mémoire sur la solidification par refroidissement d'un globe liquide. Ann. Chim. Physique 47, 250256.Google Scholar
Laplace, P. S. 1806 Méchanique Céleste, Supplement au Xe Livre, Impresse Imperiale, Paris. (Translated as Celestial Mechanics, vol. 4, Chelsea, New York, 1966.)Google Scholar
McFadden, G. B. & Coriell, S. R. 1986 The effect of fluid flow due to the crystal-melt density change on the growth of a parabolic dendrite. J. Cryst. Growth 74, 507512.CrossRefGoogle Scholar
Maxwell, J. C. 1875 On the dynamical evidence of the molecular constituion of matter. Nature 11, 357359 & 374–377.CrossRefGoogle Scholar
Mullins, W. W. 1956 Two-dimensional motion of idealized grain boundaries. J. Appl. Phys. 27, 900904.CrossRefGoogle Scholar
Nabarro, F. R. N. 1985 Material forces and configurational forces in interaction of elastic singularities. In Proc. Intl Symp. on the Mechanics of Dislocations (ed. Aifantis, E. C. & Hirth, J. P.). American Society of Metals, Metals Park, OH.Google Scholar
Palmer, H. J. 1976 The hydrodynamic stability of rapidly evaporating liquids at reduced pressure. J. Fluid Mech. 75, 487511.CrossRefGoogle Scholar
Parry, W. T. 2000 ASME International Steam Tables for Industrial Use. ASME.Google Scholar
Peach, M. O. & Koehler, J. S. 1950 The forces exerted on dislocations and the stress fields produced by them. Phys. Rev. 80, 436439.CrossRefGoogle Scholar
Penrose, O. & Fife, P. C. 1990 Thermodynamically consistent models of phase-field type for the kinetics of phase-transitions. Physica D 43, 4462.Google Scholar
Schrage, R. W. 1953 A Theoretical Study of Interphase Mass Transfer. Columbia University Press.CrossRefGoogle Scholar
Scriven, L. E. 1960 Dynamics of a fluid interface. Chem. Engng Sci. 12, 98108.CrossRefGoogle Scholar
Scriven, L. E. & Sternling, C. V. 1963 On cellular convection driven by surface-tension gradients: effects of mean surface tension and surface viscosity. J. Fluid Mech. 19, 321340.CrossRefGoogle Scholar
Sekerka, R. F., Voorhees, P. W., Coriell, S. R. & McFadden, G. B. 1988 Initial conditions implied by t 1/2 solidification of a sphere with capillarity and interfacial kinetics. J. Cryst. Growth 87, 415420.CrossRefGoogle Scholar
Slattery, J. C. 1990 Interfacial Transport Phenomena. Springer.CrossRefGoogle Scholar
Stefan, J. 1889 Über einige Probleme der Theorie der Wärmeleitung. Sb. Kais. Akad. Wiss., Wien, Math.-Naturwiss. 98, 473484.Google Scholar
Stone, H. A., Stroock, A. D. & Adjari, A. 2004 Engineering flows in small devices: microfluidics toward lab-on-a-chip. Annu. Rev. Fluid Mech. 36, 381411.CrossRefGoogle Scholar
Voronkov, V. V. 1964 Conditions for formation of mosaic structure on a crystallization front. Sov. Phys. Solid State 6, 23782381.Google Scholar
Wagner, W. 1998 Properties of Water and Steam. Springer.Google Scholar
Wang, S. L., Sekerka, R. F., Wheeler, A. A., Murray, B. T., Coriell, S. R., Braun, R. J. & McFadden, G. B. 1993 Thermodynamically-consistent phase-field models for solidification. Physica D 69, 189200.Google Scholar
Young, T. 1805 An essay on the cohesion of fluids. Phil. Trans. R. Soc. Lond. 95, 6587.Google Scholar