Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-23T11:26:18.689Z Has data issue: false hasContentIssue false

Formation of surface trailing counter-rotating vortex pairs downstream of a sonic jet in a supersonic cross-flow

Published online by Cambridge University Press:  06 July 2018

Mingbo Sun*
Affiliation:
Science and Technology on Scramjet Laboratory, National University of Defense Technology, Changsha 410073, China
Zhiwei Hu
Affiliation:
Faculty of Engineering and the Environment, University of Southampton, Southampton SO17 1BJ, UK
*
Email address for correspondence: [email protected]

Abstract

Direct numerical simulations were conducted to uncover physical aspects of a transverse sonic jet injected into a supersonic cross-flow at a Mach number of 2.7. Simulations were carried out for two different jet-to-cross-flow momentum flux ratios ($J$) of 2.3 and 5.5. It is identified that collision shock waves behind the jet induce a herringbone separation bubble in the near-wall jet wake and a reattachment valley is formed and embayed by the herringbone recirculation zone. The recirculating flow in the jet leeward separation bubble forms a primary trailing counter-rotating vortex pair (TCVP) close to the wall surface. Analysis on streamlines passing the separation region shows that the wing of the herringbone separation bubble serves as a micro-ramp vortex generator and streamlines acquire angular momentum downstream to form a secondary surface TCVP in the reattachment valley. Herringbone separation wings disappear in the far field due to the cross-interaction of lateral supersonic flow and the expansion flow in the reattachment valley, which also leads to the vanishing of the secondary TCVP. A three-dimensional schematic of surface trailing wakes is presented and explains the formation mechanisms of the surface TCVPs.

Type
JFM Papers
Copyright
© 2018 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Babinsky, H., Li, Y. & Ford, C. W. P. 2009 Microramp control of supersonic oblique shock-wave/boundary-layer interactions. AIAA J. 47 (3), 668675.Google Scholar
Ben-Yakar, A., Mungal, G. M. & Hanson, R. K. 2006 Time evolution and mixing characteristics of hydrogen and ethylene transverse jets in supersonic crossflows. Phys. Fluids 18, 26101.Google Scholar
Chai, X., Iyer, P. S. & Mahesh, K. 2015 Numerical study of high speed jets in crossflow. J.  Fluid Mech. 785, 152188.Google Scholar
Dickmann, D. A. & Lu, F. K. 2009 Shock/boundary-layer interaction effects on transverse jets in crossflow over a flat plate. J. Spacecr. Rockets 46 (6), 11321141.Google Scholar
Duan, L., Beekman, I. & Martin, M. P. 2011 Direct numerical simulation of hypersonic turbulent boundary layers. Part 3. Effect of Mach number. J. Fluid Mech. 672, 245267.Google Scholar
Duan, L., Choudhar, M. M. & Wu, M. 2014 Numerical study of acoustic radiation due to a supersonic turbulent boundary layer. J. Fluid Mech. 746, 165192.Google Scholar
Ducros, F., Ferrand, V., Nicoud, F., Weber, C., Darracq, D., Gacherieu, C. & Poinsot, T. 1999 Large-eddy simulation of the shock/turbulence interaction. J. Comput. Phys. 152, 517549.Google Scholar
Everett, D. E., Woodmansee, M. A., Dutton, J. C. & Morris, M. J. 1998 Wall pressure measurements for a sonic jet injected transversely into a supersonic crossflow. J. Propul. Power 14 (6), 861886.Google Scholar
Gaitonde, D. V. 2015 Progress in shock wave/boundary layer interactions. Prog. Aerosp. Sci. 72, 8099.Google Scholar
Gamba, M. & Mungal, M. G. 2015 Ignition, flame structure and near-wall burning in transverse hydrogen jets in supersonic crossflow. J. Fluid Mech. 780, 226273.Google Scholar
Gruber, M. R., Nejad, A. S., Chen, T. H. & Dutton, J. C. 1997 Large structure convection velocity measurements in compressible transverse injection flowfields. Exp. Fluids 22, 397407.Google Scholar
Gruber, M. R., Nejad, A. S., Chen, T. H. & Dutton, J. C. 2000 Transverse injection from circular and elliptic nozzles into a supersonic crossflow. J. Propul. Power 16 (3), 449457.Google Scholar
Hu, X. Y., Wang, Q. & Adams, N. A. 2010 An adaptive central-upwind weighted essentially non-oscillatory scheme. J. Comput. Phys. 229, 89528965.Google Scholar
Jeong, J. & Hussain, F. 1995 On the identication of a vortex. J. Fluid Mech. 285, 6994.Google Scholar
Karagozian, A. R. 2010 Transverse jets and their control. Prog. Energy Combust. Sci. 36 (5), 531553.Google Scholar
Kawai, S. & Lele, S. K. 2010 Large-eddy simulation of jet mixing in supersonic crossflows. AIAA J. 48 (9), 20632083.Google Scholar
Mahesh, K. 2013 The interaction of jets with crossflow. Annu. Rev. Fluid Mech. 45, 379407.Google Scholar
Morkovin, M. V. 1962 Effects of compressibility on turbulent flows. In Mecanique de la Turbulence (ed. Favre, A.), pp. 367380. CNRS.Google Scholar
Morkovin, M. V., Pierce, C. A. J. & Craven, C. E.1952 Interaction of a side jet with a supersonic main stream. Tech. Rep. 35. Engineering Research Institute, University of Michigan.Google Scholar
Muppidi, S. & Mahesh, K. 2005 Study of trajectories of jets in crossflow using direct numerical simulations. J. Fluid Mech. 530, 81100.Google Scholar
Portz, R. & Segal, C. 2006 Penetration of gaseous jets in supersonic flows. AIAA J. 44 (10), 24262429.Google Scholar
Rana, Z. A., Thornber, B. & Drikakis, D. 2011 Transverse jet injection into a supersonic turbulent cross-flow. Phys. Fluids 23 (046103), 122.Google Scholar
Rothstein, A. D. & Wantuck, P. J.1992 A study of the normal injection of hydrogen into a heated supersonic flow using planar laser-induced fluorescence. AIAA Paper 92-3423.Google Scholar
Sandham, N. D. 2016 Effects of compressibility and shock–wave interactions on turbulent shear flows. Flow Turbul. Combust. 97, 125.Google Scholar
Sandham, N. D., Johnstone, R. & Jacobs, C. T. 2017 Surface-sampled simulations of turbulent flow at high Reynolds number. Intl J. Numer. Meth. Fluids 85, 113.Google Scholar
Sandham, N. D., Li, Q. & Yee, H. C. 2002 Entropy splitting for high-order numerical simulation of compressible turbulence. J. Comput. Phys. 178, 307322.Google Scholar
Sandham, N. D., Schlein, E., Wagner, A., Willems, S. & Steelant, J. 2014 Transitional shock-wave/boundary-layer interactions in hypersonic flow. J. Fluid Mech. 752, 349382.Google Scholar
Sandhu, H. S. & Sandham, N. D.1996 Simulations of leading-edge receptivity to free-stream disturbances. Tech. Rep., Faculty of Engineering, Queen Mary Westfield College.Google Scholar
Santiago, J. G. & Dutton, J. C. 1997 Velocity measurements of a jet injected into a supersonic crossflow. J. Propul. Power 13 (2), 264273.Google Scholar
Schetz, J. & Billig, F. S. 1966 Penetration of gaseous jets injected into a supersonic stream. J. Spacecr. Rockets 3, 16581665.Google Scholar
Schlatter, P. & Orlu, R. 2010 Assessment of direct numerical simulation data of turbulent boundary layers. J. Fluid. Mech. 659, 116126.Google Scholar
Sun, M. B. & Hu, Z. W. 2018 Generation of upper trailing counter-rotating vortices of a sonic jet in a supersonic crossflow. AIAA J. 56, 10471059.Google Scholar
Sun, M. B., Zhang, S. P., Zhao, Y. H., Zhao, Y. X. & Liang, J. H. 2013 Experimental investigation on transverse jet penetration into a supersonic turbulent crossflow. Sci. China Tech. Sci. 56 (8), 19891998.Google Scholar
Thompson, K. W. 1987 Time dependent boundary conditions for hyperbolic systems. J. Comput. Phys. 68, 124.Google Scholar
Touber, E.2010 Unsteadiness in shock wave boundary layer interactions. PhD thesis, University of Southampton.Google Scholar
Touber, E. & Sandham, N. D. 2009 Large-eddy simulation of low-frequency unsteadiness in a turbulent shock-induced separation bubble. Theor. Comput. Fluid Dyn. 23, 79107.Google Scholar
Viti, V., Neel, R. & Schetz, J. A. 2009 Detailed flow physics of the supersonic jet interaction flow field. Phys. Fluids 21 (4), 046101.Google Scholar
Wang, B., Liu, W. D., Sun, M. B. & Zhao, Y. X. 2015a Fluid redistribution in the turbulent boundary layer under the microramp control. AIAA J. 53 (12), 37753787.Google Scholar
Wang, B., Sandham, N. D., Hu, Z. & W, Liu. 2015b Numerical study of oblique shock-wave/boundary-layer interaction considering sidewall effect. J. Fluid Mech. 767, 526561.Google Scholar
Wang, H. B., Wang, Z. G., Sun, M. B. & Qin, N. 2013 Hybrid Reynolds-averaged Navier–Stokes/large-eddy simulation of jet mixing in a supersonic crossflow. Sci. China Tech. Sci. 56 (6), 14351448.Google Scholar
Won, S.-H., Jeung, I.-S., Parent, B. & Choi, J.-Y. 2010 Numerical investigation of transverse hydrogen jet into supersonic crossflow using detached-eddy simulation. AIAA J. 48 (6), 10471058.Google Scholar
Xie, Z. T. & Castro, I. P. 2008 Efficient generation of inflow conditions for large-eddy simulation of street-scale flows. Flow Turbul. Combust. 81, 449470.Google Scholar
Yee, H. C., Sandham, N. D. & Djomehri, M. J. 1999 Low-dissipative high-order shock-capturing methods using characteristic-based filters. J. Comput. Phys. 150, 199238.Google Scholar
Zhang, Y. J., Liu, W. D. & Sun, M. B. 2016 Effect of microramp on transverse jet in supersonic crossflow. AIAA J. 54 (12), 40414044.Google Scholar