Hostname: page-component-78c5997874-g7gxr Total loading time: 0 Render date: 2024-11-17T11:23:24.516Z Has data issue: false hasContentIssue false

Force moments of an active particle in a complex fluid

Published online by Cambridge University Press:  22 September 2017

Gwynn J. Elfring*
Affiliation:
Department of Mechanical Engineering, Institute of Applied Mathematics, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
*
Email address for correspondence: [email protected]

Abstract

A generalized reciprocal theorem is formulated for the motion and hydrodynamic force moments of an active particle in an arbitrary background flow of a (weakly nonlinear) complex fluid. This formalism includes as special cases a number of previous calculations of the motion of both passive and active particles in Newtonian and non-Newtonian fluids.

Type
Rapids
Copyright
© 2017 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Batchelor, G. K. 1970 The stress system in a suspension of force-free particles. J. Fluid Mech. 41, 545570.Google Scholar
Becker, L. E., McKinley, G. H. & Stone, H. A. 1996 Sedimentation of a sphere near a plane wall: weak non-Newtonian and inertial effects. J. Non-Newtonian Fluid Mech. 63, 201233.Google Scholar
Brady, J. F. & Bossis, G. 1988 Stokesian dynamics. Annu. Rev. Fluid Mech. 20, 111157.CrossRefGoogle Scholar
Cox, R. G. 1970 The motion of long slender bodies in a viscous fluid. Part 1. General theory. J. Fluid Mech. 44, 791810.CrossRefGoogle Scholar
Datt, C., Natale, G., Hatzikiriakos, S. G. & Elfring, G. J. 2017 An active particle in a complex fluid. J. Fluid Mech. 823, 675688.Google Scholar
Datt, C., Zhu, L., Elfring, G. J. & Pak, O. S. 2015 Squirming through shear-thinning fluids. J. Fluid Mech. 784, R1.Google Scholar
Einarsson, J. & Mehlig, B. 2017 Spherical particle sedimenting in weakly viscoelastic shear flow. Phys. Rev. Fluids 2, 063301.Google Scholar
Einarsson, J., Yang, M. & Shaqfeh, E. S. G.2017 The Einstein viscosity with fluid elasticity. arXiv:1705.06770 [physics.flu-dyn].CrossRefGoogle Scholar
Elfring, G. J. 2015 A note on the reciprocal theorem for the swimming of simple bodies. Phys. Fluids 27, 023101.Google Scholar
Elfring, G. J. & Goyal, G. 2016 The effect of gait on swimming in viscoelastic fluids. J. Non-Newtonian Fluid Mech. 234, 814.Google Scholar
Elfring, G. J. & Lauga, E. 2015 Theory of locomotion in complex fluids. In Complex Fluids in Biological Systems, pp. 285319. Springer.Google Scholar
Elfring, G. J., Pak, O. S. & Lauga, E. 2010 Two-dimensional flagellar synchronization in viscoelastic fluids. J. Fluid Mech. 646, 505515.Google Scholar
Gomez-Solano, J. R., Blokhuis, A. & Bechinger, C. 2016 Dynamics of self-propelled Janus particles in viscoelastic fluids. Phys. Rev. Lett. 116, 138301.Google Scholar
Happel, J. & Brenner, H. 1965 Low Reynolds Number Hydrodynamics. Prentice-Hall.Google Scholar
Khair, A. S. & Squires, T. M. 2010 Active microrheology: a proposed technique to measure normal stress coefficients of complex fluids. Phys. Rev. Lett. 105, 156001.Google Scholar
Koch, D. L., Lee, E. F. & Mustafa, I. 2016 Stress in a dilute suspension of spheres in a dilute polymer solution subject to simple shear flow at finite Deborah numbers. Phys. Rev. Fluids 1, 013301.Google Scholar
Koch, D. L. & Subramanian, G. 2006 The stress in a dilute suspension of spheres suspended in a second-order fluid subject to a linear velocity field. J. Non-Newtonian Fluid Mech. 138 (2), 8797.Google Scholar
Lauga, E. 2009 Life at high Deborah number. Europhys. Lett. 86, 64001.Google Scholar
Lauga, E. 2014 Locomotion in complex fluids: integral theorems. Phys. Fluids 26, 081902.CrossRefGoogle Scholar
Lauga, E. & Michelin, S. 2016 Stresslets induced by active swimmers. Phys. Rev. Lett. 117, 148001.Google Scholar
Leal, L. G. 1979 The motion of small particles in non-Newtonian fluids. J. Non-Newtonian Fluid Mech. 5, 3378.Google Scholar
Leal, L. G. 1980 Particle motions in a viscous fluid. Annu. Rev. Fluid Mech. 12, 435476.Google Scholar
Mathijssen, A. J. T. M., Shendruk, T. N., Yeomans, J. M. & Doostmohammadi, A. 2016 Upstream swimming in microbiological flows. Phys. Rev. Lett. 116, 028104.Google Scholar
Michelin, S. & Lauga, E. 2014 Phoretic self-propulsion at finite Pèclet numbers. J. Fluid Mech. 747, 572604.Google Scholar
Oppenheimer, N., Navardi, S. & Stone, H. A. 2016 Motion of a hot particle in viscous fluids. Phys. Rev. Fluids 1, 014001.Google Scholar
Pak, O. S., Zhu, L., Brandt, L. & Lauga, E. 2012 Micropropulsion and microrheology in complex fluids via symmetry breaking. Phys. Fluids 24, 103102.Google Scholar
Papavassiliou, D. & Alexander, G. P. 2015 The many-body reciprocal theorem and swimmer hydrodynamics. Europhys. Lett. 110, 44001.CrossRefGoogle Scholar
Papavassiliou, D. & Alexander, G. P. 2017 Exact solutions for hydrodynamic interactions of two squirming spheres. J. Fluid Mech. 813, 618646.Google Scholar
Rallison, J. M. 2012 The stress in a dilute suspension of liquid spheres in a second-order fluid. J. Fluid Mech. 693, 500507.CrossRefGoogle Scholar
Riley, E. E. & Lauga, E. 2015 Small-amplitude swimmers can self-propel faster in viscoelastic fluids. J. Theor. Biol. 382, 345355.CrossRefGoogle ScholarPubMed
Sharifi-Mood, N., Mozaffari, A. & Córdova-Figueroa, U. M. 2016 Pair interaction of catalytically active colloids: from assembly to escape. J. Fluid Mech. 798, 910954.Google Scholar
Squires, T. M. & Mason, T. G. 2010 Fluid mechanics of microrheology. Annu. Rev. Fluid Mech. 42, 413438.Google Scholar
Stone, H. A. & Samuel, A. D. T. 1996 Propulsion of microorganisms by surface distortions. Phys. Rev. Lett. 77, 41024104.Google Scholar
Zia, R. N. & Brady, J. F. 2015 Theoretical microrheology. In Complex Fluids in Biological Systems, pp. 113157. Springer.Google Scholar