Hostname: page-component-669899f699-7xsfk Total loading time: 0 Render date: 2025-04-28T02:08:04.194Z Has data issue: false hasContentIssue false

The fluid mechanics of spray cleaning: when the stress amplification at the contact lines of impacting droplets nano-scraps particles

Published online by Cambridge University Press:  25 November 2024

A. Lallart
Affiliation:
Université Grenoble Alpes, Grenoble-INP, CNRS, LEGI, F-38000 Grenoble, France STMicroelectronics, 850 Rue Jean Monnet, Crolles 38926-Cedex, France Université Grenoble Alpes, CNRS, LIPhy, F-38000 Grenoble, France
A. Cartellier
Affiliation:
Université Grenoble Alpes, Grenoble-INP, CNRS, LEGI, F-38000 Grenoble, France
P. Garnier
Affiliation:
STMicroelectronics, 850 Rue Jean Monnet, Crolles 38926-Cedex, France
E. Charlaix
Affiliation:
Université Grenoble Alpes, CNRS, LIPhy, F-38000 Grenoble, France
E. Lorenceau*
Affiliation:
Université Grenoble Alpes, CNRS, LIPhy, F-38000 Grenoble, France
*
Email address for correspondence: [email protected]

Abstract

In spray cleaning, a multitude of small drops, violently accelerated by a high-speed gas stream, strike a dirty surface. This process is extremely effective: very little dirt can resist it. This is true even for dirt particles whose characteristic size is less than 100 nm. Spray cleaning is classically modelled by balancing particle adhesion with either inertial stress or viscous shear near the surface, the latter being calculated using droplet size and velocity as the characteristic length and velocity. This results in dimensionless numbers that are often well below one, suggesting that the mechanical stress exerted on the surface by the drop impact that detaches the particle is not well captured. Using quantitative nanoscale measurements, we show that the remarkable efficiency of spray cleaning results from the forced spreading of each droplet on the surface, which generates an unsteady and inhomogeneous shear confined to a boundary layer entrained in the wake of the liquid–solid contact line. In the very first moments of impact, the boundary layer is extremely thin, yielding a gigantic stress: the contact line of the spreading droplets sweeps all the surface particles away. We propose a quantitative model of spray cleaning based on this unsteady surface stress, which agrees well with (i) experimental data obtained with spray droplets of $34\ \mathrm {\mu }$m mean radius impacting the surface to be cleaned at a mean velocity ranging between 30 and 70 m s$^{-1}$ and contamination by nanoparticles of varying nature and shape and (ii) data in the literature on spray cleaning.

Type
JFM Papers
Copyright
© The Author(s), 2024. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Brunier-Coulin, F., Cuellar, P. & Philippe, P. 2020 Generalized shields criterion for weakly cohesive granular materials. Phys. Rev. Fluids 5 (3), 034308.CrossRefGoogle Scholar
Burdick, G.M., Berman, N.S. & Beaudoin, S.P. 2001 Describing hydrodynamic particle removal from surfaces using the particle Reynolds number. J. Nanopart. Res. 3 (5–6), 455467.CrossRefGoogle Scholar
Burdick, G.M., Berlab, N.S. & Beaudoin, S.P. 2005 Hydrodynamic particle removal from surfaces. Thin Solid Films 488, 116123.CrossRefGoogle Scholar
Carroll, B.J. 1993 Physical aspects of detergency. Colloids Surf. A: Physicochem. Engng Aspects 74 (2), 131167.CrossRefGoogle Scholar
Cheng, X., Sun, T.P. & Gordillo, L. 2022 Drop impact dynamics: impact force and stress distributions. Annu. Rev. Fluid Mech. 54 (1), 5781.CrossRefGoogle Scholar
Cointe, R. 1989 Two-dimensional water-solid impact. Trans. ASME J. Offshore Mech. Arctic Engng 111 (2), 109114.CrossRefGoogle Scholar
Derjaguin, B.V., Muller, V.M. & Toporov, Y.P. 1975 Effect of contact deformations on the adhesion of particles. J. Colloids Interface Sci. 53 (2), 314326.CrossRefGoogle Scholar
Eggers, J., Fontelos, M.A., Josserand, C. & Zaleski, S. 2010 Drop dynamics after impact on a solid wall: theory and simulations. Phys. Fluids 22 (6), 062101.CrossRefGoogle Scholar
Fournel, F., Continni, L., Morales, C., Da Fonseca, J., Moriceau, H., Rieutord, F., Barthelemy, A. & Radu, I. 2012 Measurement of bonding energy in an anhydrous nitrogen atmosphere and its application to silicon direct bonding technology. J. Appl. Phys. 111 (10), 104907.CrossRefGoogle Scholar
Frommhold, P.E., Mettin, R. & Ohl, C.-D. 2015 Height-resolved velocity measurement of the boundary flow during liquid impact on dry and wetted solid substrates. Exp. Fluids 56 (4), 76.CrossRefGoogle Scholar
Gamero-Castaño, M., Torrents, A., Valdevit, L. & Zheng, J.G. 2010 Pressure-induced amorphization in silicon caused by the impact of electrosprayed nanodroplets. Phys. Rev. Lett. 105, 145701.CrossRefGoogle ScholarPubMed
Garcia-Geijo, P., Riboux, G. & Gordillo, J.M. 2020 Inclined impact of drops. J. Fluid Mech. 897, A12.CrossRefGoogle Scholar
Gordillo, J.M. & Riboux, G. 2022 The initial impact of drops cushioned by an air or vapour layer with applications to the dynamic Leidenfrost regime. J. Fluid Mech. 941, A10.CrossRefGoogle Scholar
Gordillo, L., Sun, T.P. & Cheng, X. 2018 Dynamics of drop impact on solid surfaces: evolution of impact force and self-similar spreading. J. Fluid Mech. 840, 190214.CrossRefGoogle Scholar
Howison, S.D., Ockendon, J.R., Oliver, J.M., Purvis, R & Smith, F.T. 2005 Droplet impact on a thin fluid layer. J. Fluid Mech. 542, 123.CrossRefGoogle Scholar
Johnson, K.L., Kendall, K. & Roberts, A.D. 1971 Surface energy and the contact of elastic solids. Proc. R. Soc. Lond. A 324, 301313.Google Scholar
Josserand, C., Ray, P. & Zaleski, S. 2016 Droplet impact on a thin liquid film: anatomy of the splash. J. Fluid Mech. 802, 775805.CrossRefGoogle Scholar
Josserand, C & Zaleski, S 2003 Droplet splashing on a thin liquid film. Phys. Fluids 15 (6), 16501657.CrossRefGoogle Scholar
Keegan, M.H., Nash, D.H. & Stack, M.M. 2013 On erosion issues associated with the leading edge of wind turbine blades. J. Phys. D: Appl. Phys. 46 (38), 383001.CrossRefGoogle Scholar
Kondo, T. & Ando, K. 2019 Simulation of high-speed droplet impact against a dry/wet rigid wall for understanding the mechanism of liquid jet cleaning. Phys. Fluids 31 (1), 011303.CrossRefGoogle Scholar
Landel, J.R. & Wilson, D.I. 2021 The fluid mechanics of cleaning and decontamination of surfaces. Annu. Rev. Fluid Mech. 53, 147171.CrossRefGoogle Scholar
Li, J., Zhang, B., Guo, P. & Lv, Q. 2014 Impact force of a low speed water droplet colliding on a solid surface. J. Appl. Phys. 116 (21), 214903.CrossRefGoogle Scholar
Li, Q., Tullis, T.E., Goldsby, D. & Carpick, R.W. 2011 Frictional ageing from interfacial bonding and the origins of rate and state friction. Nature 480 (7376), 233236.CrossRefGoogle ScholarPubMed
Mitchell, B.R., Klewicki, J.C., Korkolis, Y.P. & Kinsey, B.L. 2019 The transient force profile of low-speed droplet impact: measurements and model. J. Fluid Mech. 867, 300322.CrossRefGoogle Scholar
Nouhou Bako, A., Darboux, F., James, F., Josserand, C. & Lucas, C. 2016 Pressure and shear stress caused by raindrop impact at the soil surface: scaling laws depending on the water depth. Earth Surf. Process. Landf. 41 (9), 11991210.CrossRefGoogle Scholar
Okorn-Schmidt, H.F., et al. 2013 Particle cleaning technologies to meet advanced semiconductor device process requirements. ECS J. Solid State Sci. Technol. 3 (1), N3069N3080.CrossRefGoogle Scholar
Philippi, J., Lagree, P.Y. & Antkowiak, A. 2016 Drop impact on a solid surface: short-time self-similarity. J. Fluid Mech. 795, 96135.CrossRefGoogle Scholar
Popinet, S. 2009 An accurate adaptive solver for surface-tension-driven interfacial flows. J. Comput. Phys. 228 (16), 58385866.CrossRefGoogle Scholar
Purvis, R & Smith, F.T. 2005 Droplet impact on water layers: post-impact analysis and computations. Phil. Trans. R. Soc. A 363 (1830), 12091221.CrossRefGoogle ScholarPubMed
Riboux, G. & Gordillo, M.J. 2014 Experiments of drops impacting a smooth solid surface: a model of the critical impact speed for drop splashing. Phys. Rev. Lett. 113 (2), 024507.Google Scholar
Rioboo, R, Marengo, M & Tropea, C 2002 Time evolution of liquid drop impact onto solid, dry surfaces. Exp. Fluids 33 (1), 112124.CrossRefGoogle Scholar
Roisman, I.V. 2009 Inertia dominated drop collisions. II. An analytical solution of the Navier–Stokes equations for a spreading viscous film. Phys. Fluids 21 (5), 052104.CrossRefGoogle Scholar
Ross, S. & Hicks, P.D. 2019 A comparison of pre-impact gas cushioning and Wagner theory for liquid-solid impacts. Phys. Fluids 31 (4), 042101.CrossRefGoogle Scholar
Sato, M.u, Sotoku, K., Yamaguchi, K.O, Tanaka, T., Kobayashi, M. & Nadahara, S. 2011 Analysis on threshold energy of particle removal in spray cleaning technology. ECS Trans. 41 (5), 7582.CrossRefGoogle Scholar
Scholz, C.H. & Engelder, J.T. 1976 The role of asperity indentation and ploughing in rock friction – I: asperity creep and stick-slip. Intl J. Rock Mech. Mining Sci. Geomech. Abstracts 13 (5), 149154.CrossRefGoogle Scholar
Soto, D., Borel de Larivière, A., Boutillon, X., Clanet, C. & Quéré, D. 2014 The force of impacting rain. Soft Matt. 10, 49294934.CrossRefGoogle ScholarPubMed
Sun, T.P, Alvarez-Novoa, F., Andrade, K., Gutierrez, P., Gordillo, L. & Cheng, X. 2022 Stress distribution and surface shock wave of drop impact. Nat. Commun. 13 (1), 1703.Google ScholarPubMed
Visser, C.W., Frommhold, P.E., Wildeman, S., Mettin, R., Lohse, D. & Sun, C. 2015 Dynamics of high-speed micro-drop impact: numerical simulations and experiments at frame-to-frame times below 100 ns. Soft Matt. 11 (9), 17081722.CrossRefGoogle ScholarPubMed
Xu, K., et al. 2009 Removal of nano-particles by aerosol spray: effect of droplet size and velocity on cleaning performance. In Ultra Clean Processing of Semiconductor Surfaces IX, Solid State Phenomena, vol. 145, pp. 31–34. Trans Tech Publications Ltd.CrossRefGoogle Scholar
Yu, X., Shao, Y., Teh, K.Y. & Hung, D.L.S. 2022 Force of droplet impact on thin liquid films. Phys. Fluids 34 (4), 042111.CrossRefGoogle Scholar