Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-10T01:17:05.288Z Has data issue: false hasContentIssue false

Flows over surface-mounted bluff bodies with different spanwise widths submerged in a deep turbulent boundary layer

Published online by Cambridge University Press:  27 August 2019

Xingjun Fang*
Affiliation:
Department of Mechanical Engineering, University of Manitoba, Winnipeg, MB R3T 5V6, Canada
Mark F. Tachie
Affiliation:
Department of Mechanical Engineering, University of Manitoba, Winnipeg, MB R3T 5V6, Canada
*
Email address for correspondence: [email protected]

Abstract

The spatio-temporal dynamics of separation bubbles induced by surface-mounted bluff bodies with different spanwise widths and submerged in a thick turbulent boundary layer is experimentally investigated. The streamwise extent of the bluff bodies is fixed at 2.36 body heights and the spanwise aspect ratio ($AR$), defined as the ratio between the width and height, is increased from 1 to 20. The thickness of the upstream turbulent boundary layer is 4.8 body heights, and the dimensionless shear and turbulence intensity evaluated at the body height are 0.23 % and 15.8 %, respectively, while the Reynolds number based on the body height and upstream free-stream velocity is 12 300. For these upstream conditions and limited streamwise extent of the bluff bodies, two distinct and strongly interacting separation bubbles are formed over and behind the bluff bodies. A time-resolved particle image velocimetry is used to simultaneously measure the velocity field within these separation bubbles. Based on the dynamics of the mean separation bubbles over and behind the bluff bodies, the flow fields are categorized into three-dimensional, transitional and two-dimensional regimes. The results indicate that the low-frequency flapping motions of the separation bubble on top of the bluff body with $\mathit{AR}=1$ are primarily influenced by the vortex shedding motion, while those with larger aspect ratios are modulated by the large-scale streamwise elongated structures embedded in the oncoming turbulent boundary layer. For $\mathit{AR}=1$ and 20, the flapping motions in the wake region are strongly influenced by those on top of the bluff bodies but with a time delay that is dependent on the $AR$. Moreover, an expansion of the separation bubble on the top surface tends to lead to an expansion and contraction of separation bubbles in the wake of $\mathit{AR}=20$ and 1, respectively. As for the transitional case of $\mathit{AR}=8$, the separation bubbles over and behind the body are in phase over a wide range of time difference. The dynamics of the shear layer in the wake region of the transitional case is remarkably more complex than the limiting two-dimensional and three-dimensional configurations.

Type
JFM Papers
Copyright
© 2019 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abu-Mulaweh, H. I. 2009 Investigations on the effect of backward-facing and forward-facing steps on turbulent mixed-convection flow over a flat plate. Expl Heat Transfer 22, 117127.10.1080/08916150902805927Google Scholar
Adrian, R. J., Meinhart, C. D. & Tomkins, C. D. 2000 Vortex organization in the outer region of the turbulent boundary layer. J. Fluid Mech. 422, 154.10.1017/S0022112000001580Google Scholar
Agelinchaab, M. & Tachie, M. F. 2008 PIV study of separated and reattached open channel flow over surface mounted blocks. Trans. ASME J. Fluids Engng 130 (6), 061206.10.1115/1.2911677Google Scholar
Akon, A. F. & Kopp, G. A. 2016 Mean pressure distributions and reattachment lengths for roof-separation bubbles on low-rise buildings. J. Wind Engng Ind. Aerodyn. 155, 115125.10.1016/j.jweia.2016.05.008Google Scholar
Alam, M. & Sandham, N. D. 2000 Direct numerical simulation of ‘short’ laminar separation bubbles with turbulent reattachment. J. Fluid Mech. 410, 128.10.1017/S0022112099008976Google Scholar
Anand, K. & Sarkar, S. 2017 Features of a laminar separated boundary layer near the leading-edge of a model airfoil for different angles of attack: an experimental study. Trans. ASME J. Fluids Engng 139 (2), 021201.10.1115/1.4034606Google Scholar
Bergeles, G. & Athanassiadis, N. 1983 The flow past a surface-mounted obstacle. Trans. ASME J. Fluids Engng 105 (4), 461463.10.1115/1.3241030Google Scholar
Blackwelder, R. F. & Kaplan, R. E. 1976 On the wall structure of the turbulent boundary layer. J. Fluid Mech. 76 (1), 89112.10.1017/S0022112076003145Google Scholar
Brown, G. L. & Roshko, A. 1974 On density effects and large structure in turbulent mixing layers. J. Fluid Mech. 64 (4), 775816.10.1017/S002211207400190XGoogle Scholar
Burgmann, S., Dannemann, J. & Schröder, W. 2008 Time-resolved and volumetric PIV measurements of a transitional separation bubble on an SD7003 airfoil. Exp. Fluids 44, 609622.10.1007/s00348-007-0421-0Google Scholar
Camussi, R., Felli, M., Pereira, F., Aloisio, G. & Di Marco, A. 2008 Statistical properties of wall pressure fluctuations over a forward-facing step. Phys. Fluids 20, 075113.10.1063/1.2959172Google Scholar
Castro, I. P. & Robins, A. G. 1977 The flow around a surface-mounted cube in uniform and turbulent streams. J. Fluid Mech. 79, 307335.10.1017/S0022112077000172Google Scholar
Chalmers, H. A., Nyantekyi-Kwakye, B., Fang, X. & Tachie, M. F. 2019 Aspect ratio effects on turbulent flow over forward-backward-facing steps. In CSME-CFDSC Congress 2019 June 2–5, London, ON, Canada.Google Scholar
Cherry, N. J., Hillier, R. & Latour, M. E. M. P. 1984 Unsteady measurements in a separated and reattaching flow. J. Fluid Mech. 144, 1346.10.1017/S002211208400149XGoogle Scholar
De Brederode, V. & Bradshaw, P.1972 Three-dimensional flow in nominally two-dimensional separation bubbles. I. Flow behind a rearward-facing step. Tech. Rep. pp. 72–19. Imperial College of Science and Technology.Google Scholar
De Silva, C. M., Philip, J., Hutchins, N. & Marusic, I. 2017 Interfaces of uniform momentum zones in turbulent boundary layers. J. Fluid Mech. 820, 451478.10.1017/jfm.2017.197Google Scholar
Deane, A. E., Kevrekidis, I. G., Karniadakis, G. E. & Orszag, S. A. 1991 Low-dimensional models for complex geometry flows: application to grooved channels and circular cylinders. Phys. Fluids 3, 23372354.10.1063/1.857881Google Scholar
Djilali, N. & Gartshore, I. S. 1991 Turbulent flow around a bluff rectangular plate. Part I. Experimental investigation. Trans. ASME J. Fluids Engng 113 (1), 5159.10.1115/1.2926496Google Scholar
Essel, E. E., Nematollahi, A., Thacher, E. W. & Tachie, M. F. 2015 Effects of upstream roughness and Reynolds number on separated and reattached turbulent flow. J. Turbul. 16 (9), 872899.10.1080/14685248.2015.1033060Google Scholar
Essel, E. E. & Tachie, M. F. 2015 Roughness effects on turbulent flow downstream of a backward facing step. Flow Turbul. Combust. 94 (1), 125153.10.1007/s10494-014-9549-1Google Scholar
Essel, E. E. & Tachie, M. F. 2017 Upstream roughness and Reynolds number effects on turbulent flow structure over forward facing step. Intl J. Heat Fluid Flow 66, 226242.10.1016/j.ijheatfluidflow.2015.11.004Google Scholar
Fadla, F., Alizard, F., Keirsbulck, L., Robinet, J.-C., Laval, J.-P., Foucaut, J.-M., Chovet, C. & Lippert, M. 2019 Investigation of the dynamics in separated turbulent flow. Eur. J. Mech. (B/Fluids) 76, 190204.10.1016/j.euromechflu.2019.01.006Google Scholar
Fang, X. & Tachie, M. F. 2019 On the unsteady characteristics of turbulent separations over a forward-backward-facing step. J. Fluid Mech. 863, 9941030.10.1017/jfm.2018.962Google Scholar
Farell, C., Carrasquel, S., Güven, O. & Patel, V. C. 1977 Effect of wind-tunnel walls on the flow past circular cylinder and cooling tower models. Trans. ASME J. Fluids Engng 99 (3), 470479.10.1115/1.3448820Google Scholar
Flack, K. A., Schultz, M. P. & Shapiro, T. A. 2005 Experimental support for Townsend’s Reynolds number similarity hypothesis on rough walls. Phys. Fluids 17, 035102.10.1063/1.1843135Google Scholar
Graftieaux, L., Michard, M. & Grosjean, N. 2001 Combining PIV, POD and vortex indentification algorithms for the study of unsteady turbulent swirling flows. Meas. Sci. Technol. 12, 14221429.10.1088/0957-0233/12/9/307Google Scholar
Graziani, A., Kerhervé, F., Martinuzzi, R. J. & Keirsbulck, L. 2018 Dynamics of the recirculating areas of a forward-facing step. Exp. Fluids 59, 154.10.1007/s00348-018-2608-yGoogle Scholar
Graziani, A., Lippert, M., Uystepruyst, D. & Keirsbulck, L. 2017 Scaling and flow dependencies over forward-facing steps. Intl J. Heat Fluid Flow 67, 220229.10.1016/j.ijheatfluidflow.2017.08.009Google Scholar
Hearst, R. J., Gomit, G. & Ganapathisubramani, B. 2016 Effect of turbulence on the wake of a wall-mounted cube. J. Fluid Mech. 804, 513530.10.1017/jfm.2016.565Google Scholar
Humble, R. A., Scarano, F. & Van Oudheusden, B. W. 2009 Unsteady aspects of an incident shock wave/turbulent boundary layer interaction. J. Fluid Mech. 635, 4774.10.1017/S0022112009007630Google Scholar
Hunt, J. C. R., Abell, C. J., Peterka, J. A. & Woo, H. 1978 Kinematical studies of the flows around free or surface-mounted obstacles; applying topology to flow visualization. J. Fluid Mech. 86 (1), 179200.10.1017/S0022112078001068Google Scholar
Hussein, H. J. & Martinuzzi, R. J. 1996 Energy balance for turbulent flow around a surface mounted cube placed in a channel. Phys. Fluids 8 (3), 764780.10.1063/1.868860Google Scholar
Kevin, Monty, J. & Hutchins, N. 2019 Turbulent structures in a statistically three-dimensional boundary layer. J. Fluid Mech. 859, 543565.10.1017/jfm.2018.814Google Scholar
Kiya, M. & Sasaki, K. 1983 Structure of a turbulent separation bubble. J. Fluid Mech. 137, 83113.10.1017/S002211208300230XGoogle Scholar
Kiya, M., Sasaki, K. & Arie, M. 1982 Discrete-vortex simulation of a turbulent separation bubble. J. Fluid Mech. 120, 219244.10.1017/S0022112082002742Google Scholar
van der Kindere, J. & Ganapathisubramani, B. 2018 Effect of length of two-dimensional obstacles on characteristics of separation and reattachment. J. Wind Engng Ind. Aerodyn. 178, 3848.10.1016/j.jweia.2018.04.018Google Scholar
Krajnović, S. & Davidson, L. 2002 Large-eddy simulation of the flow around a bluff body. AIAA J. 40 (5), 927936.10.2514/2.1729Google Scholar
Lander, D. C., Letchford, C. W., Amitay, M. & Kopp, G. A. 2016 Influence of the bluff body shear layers on the wake of a square prism in a turbulent flow. Phys. Rev. Fluids 1, 044406.10.1103/PhysRevFluids.1.044406Google Scholar
Lanzerstorfer, D. & Kuhlmann, H. C. 2012 Three-dimensional instability of the flow over a forward-facing step. J. Fluid Mech. 695, 390404.10.1017/jfm.2012.28Google Scholar
Laskari, A., de Kat, R., Hearst, R. J. & Ganapathisubramani, B. 2018 Time evolution of uniform momentum zones in a turbulent boundary layer. J. Fluid Mech. 842, 554590.10.1017/jfm.2018.126Google Scholar
Le, H., Moin, P. & Kim, J. 1997 Direct numerical simulation of turbulent flow over a backward-facing step. J. Fluid Mech. 330, 349374.10.1017/S0022112096003941Google Scholar
Lee, I. & Sung, H. J. 2001 Characteristics of wall pressure fluctuations in separated flows over a backward-facing step. Part II. Unsteady wavelet analysis. Exp. Fluids 30, 273282.10.1007/s003480000173Google Scholar
Lim, H. C., Castro, I. P. & Hoxey, R. P. 2007 Bluff bodies in deep turbulent boundary layers: Reynolds-number issues. J. Fluid Mech. 571, 97118.10.1017/S0022112006003223Google Scholar
Ma, X. & Karniadakis, G. 2002 A low-dimensional model for simulating three-dimensional cylinder flow. J. Fluid Mech. 458, 181190.10.1017/S0022112002007991Google Scholar
Martinuzzi, R. & Tropea, C. 1993 The flow around surface-mounted, prismatic obstacles placed in a fully developed channel flow. Trans. ASME J. Fluids Engng 115, 8592.10.1115/1.2910118Google Scholar
Meinders, E. R., Hanjalic, K. & Martinuzzi, R. J. 1999 Experimental study of the local convection heat transfer from a wall-mounted cube in turbulent channel flow. Trans. ASME J. Heat Transfer 121, 564573.10.1115/1.2826017Google Scholar
Mohammed-Taifour, A. & Weiss, J. 2016 Unsteadiness in a large turbulent separation bubble. J. Fluid Mech. 799, 383412.10.1017/jfm.2016.377Google Scholar
Monty, J. P., Hutchins, N., Ng, H. C. H., Marusic, I. & Chong, M. S. 2009 A comparison of turbulent pipe, channel and boundary layer flows. J. Fluid Mech. 632, 431442.10.1017/S0022112009007423Google Scholar
Morrison, M. J. & Kopp, G. A. 2018 Effects of turbulence intensity and scale on surface pressure fluctuations in the roof of a low-rise building in the atmospheric boundary layer. J. Wind Engng Ind. Aerodyn. 183, 140151.10.1016/j.jweia.2018.10.017Google Scholar
Moss, W. D. & Baker, S. 1980 Re-circulating flows associated with two-dimensional steps. Aeronaut. Q. 31 (3), 151172.10.1017/S0001925900008878Google Scholar
Nematollahi, A. & Tachie, M. F. 2018 Time-resolved PIV measurement of influence of upstream roughness on separated and reattached turbulent flows over a forward-facing step. AIP Adv. 8, 105110.10.1063/1.5063455Google Scholar
Noack, B. R., Afanasiev, K., Morzyński, M., Tadmor, G. & Thiele, F. 2003 A hierarchy of low-dimensional models for the transient and post-transient cylinder wake. J. Fluid Mech. 497, 335363.10.1017/S0022112003006694Google Scholar
van Oudheusden, B. W., Scarano, F., van Hinsberg, N. P. & Watt, D. W. 2005 Phase-resolved characterization of vortex shedding in the near wake of a square-section cylinder at incidence. Exp. Fluids 39, 8698.10.1007/s00348-005-0985-5Google Scholar
Pearson, D. S., Goulart, P. J. & Ganapathisubramani, B. 2013 Turbulent separation upstream of a forward-facing step. J. Fluid Mech. 724, 284304.10.1017/jfm.2013.113Google Scholar
Perrin, R., Braza, M., Cid, E., Cazin, S., Barthet, A., Sevrain, A., Mockett, C. & Thiele, F. 2007 Obtaining phase averaged turbulence properties in the near wake of a circular cylinder at high Reynolds number using POD. Exp. Fluids 43, 341355.10.1007/s00348-007-0347-6Google Scholar
Pope, S. B. 2000 Turbulent Flows. Cambridge University Press.10.1017/CBO9780511840531Google Scholar
Riches, G., Martinuzzi, R. & Morton, C. 2018 Proper orthogonal decomposition analysis of a circular cylinder undergoing vortex-induced vibrations. Phys. Fluids 30, 105103.10.1063/1.5046090Google Scholar
Sakamoto, H. & Arie, M. 1983 Vortex shedding from a rectangular prism and a circular cylinder placed vertically in a turbulent boundary layer. J. Fluid Mech. 126, 147165.10.1017/S0022112083000087Google Scholar
Samson, A. & Sarkar, S. 2016 Effects of free-stream turbulence on transition of a separated boundary layer over the leading-edge of a constant thickness airfoil. Trans. ASME J. Fluids Engng 138, 021202.10.1115/1.4031249Google Scholar
Sherry, M., Lo Jacono, D. & Sheridan, J. 2010 An experimental investigation of the recirculation zone formed downstream of a forward facing step. J. Wind Engng Ind. Aerodyn. 98 (12), 888894.10.1016/j.jweia.2010.09.003Google Scholar
Simpson, R. L. 1983 A model for the backflow mean velocity profile. AIAA J. 21, 142143.10.2514/3.8040Google Scholar
Simpson, R. L. 1989 Turbulent boundary-layer separation. Annu. Rev. Fluid Mech. 21, 205234.10.1146/annurev.fl.21.010189.001225Google Scholar
Simpson, R. L., Chew, Y.-T. & Shivaprasad, B. G. 1981 The structure of a separating turbulent boundary layer. Part 1. Mean flow and Reynolds stresses. J. Fluid Mech. 113, 2351.10.1017/S002211208100339XGoogle Scholar
Skote, M. & Henningson, D. S. 2002 Direct numerical simulation of a separated turbulent boundary layer. J. Fluid Mech. 471, 107136.10.1017/S0022112002002173Google Scholar
Stüer, H., Gyr, A. & Kinzelbach, W. 1999 Laminar separation on a forward facing step. Eur. J. Mech. (B/Fluids) 18, 675692.10.1016/S0997-7546(99)00104-1Google Scholar
Thacker, A., Aubrun, S., Leroy, A. & Devinant, P. 2013 Experimental characterization of flow unsteadiness in the centerline plane of an Ahmed body rear slant. Exp. Fluids 54, 1479.10.1007/s00348-013-1479-5Google Scholar
Tomkins, C. D. & Adrian, R. J. 2003 Spanwise structure and scale growth in turbulent boundary layers. J. Fluid Mech. 490, 3774.10.1017/S0022112003005251Google Scholar
Vinuesa, R., Schlatter, P., Malm, J., Mavriplis, C. & Henningson, D. S. 2015 Direct numerical simulation of the flow around a wall-mounted square cylinder under various inflow conditions. J. Turbul. 16 (6), 555587.10.1080/14685248.2014.989232Google Scholar
Wang, H. F. & Zhou, Y. 2009 The finite-length square cylinder near wake. J. Fluid Mech. 638, 453490.10.1017/S0022112009990693Google Scholar
Wang, H. F., Zhou, Y., Chan, C. K. & Lam, K. S. 2006 Effect of initial conditions on interaction between a boundary layer and a wall-mounted finite-length-cylinder wake. Phys. Fluids 18, 065106.10.1063/1.2212329Google Scholar
Wang, H. F., Zhou, Y. & Mi, J. 2012 Effects of aspect ratio on the drag of a wall-mounted finite-length cylinder in subcritical and critical regimes. Exp. Fluids 53, 423436.10.1007/s00348-012-1299-zGoogle Scholar
Wee, D., Yi, T., Annaswamy, A. & Ghoniem, A. F. 2004 Self-sustained oscillations and vortex shedding in backward-facing step flows: simulation and linear instability analysis. Phys. Fluids 16 (9), 33613373.10.1063/1.1773091Google Scholar
Wilhelm, D., Härtel, C. & Kleiser, L. 2003 Computational analysis of the two-dimensional-three-dimensional transition in forward-facing step flow. J. Fluid Mech. 489, 127.10.1017/S0022112003004440Google Scholar
Wu, Y. & Christensen, K. T. 2007 Outer-layer similarity in the presence of a practical rough-wall topography. Phys. Fluids 19, 085108.10.1063/1.2741256Google Scholar
Yakhot, A., Anor, T., Liu, H. & Nikitin, N. 2006a Direct numerical simulation of turbulent flow around a wall-mounted cube: spatio-temporal evolution of large-scale vortices. J. Fluid Mech. 566, 19.10.1017/S0022112006002151Google Scholar
Yakhot, A., Liu, H. & Nikitin, N. 2006b Turbulent flow around a wall-mounted cube: a direct numerical simulation. Intl J. Heat Fluid Flow 27, 9941009.10.1016/j.ijheatfluidflow.2006.02.026Google Scholar
Yang, Z. & Voke, P. R. 2001 Large-eddy simulation of boundary-layer separation and transition at a change of surface curvature. J. Fluid Mech. 439, 305333.10.1017/S0022112001004633Google Scholar
Zhang, W., Hain, R. & Kähler, C. J. 2008 Scanning PIV investigation of the laminar separation bubble on a SD7003 airfoil. Exp. Fluids 45, 725743.10.1007/s00348-008-0563-8Google Scholar

Fang and Tachie supplementary movie

Vortex shedding motion in the streamwise-spanwise plane behind the bluff body of AR1.

Download Fang and Tachie supplementary movie(Video)
Video 77.4 MB