Hostname: page-component-78c5997874-dh8gc Total loading time: 0 Render date: 2024-11-20T01:08:49.587Z Has data issue: false hasContentIssue false

Flow in a commercial steel pipe

Published online by Cambridge University Press:  08 January 2008

L. I. LANGELANDSVIK
Affiliation:
Department of Energy and Process Engineering, Norwegian University of Science and Technology, N-7491 Trondheim, Norway
G. J. KUNKEL
Affiliation:
Department of Mechanical and Aerospace Engineering, Princeton University, Princeton NJ 08540, USA
A. J. SMITS
Affiliation:
Department of Mechanical and Aerospace Engineering, Princeton University, Princeton NJ 08540, USA

Abstract

Mean flow measurements are obtained in a commercial steel pipe with krms/D = 1/26 000, where krms is the roughness height and D the pipe diameter, covering the smooth, transitionally rough, and fully rough regimes. The results indicate a transition from smooth to rough flow that is much more abrupt than the Colebrook transitional roughness function suggests. The equivalent sandgrain roughness was found to be 1.6 times the r.m.s. roughness height, in sharp contrast to the value of 3.0 to 5.0 that is commonly used. The difference amounts to a reduction in pressure drop for a given flow rate of at least 13% in the fully rough regime. The mean velocity profiles support Townsend's similarity hypothesis for flow over rough surfaces.

Type
Papers
Copyright
Copyright © Cambridge University Press 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Allen, J. J., Shockling, M. A. & Smits, A. J. 2005 Evaluation of a universal transition resistance diagram for pipes with honed surfaces. Phys. Fluids 17, 121702.CrossRefGoogle Scholar
Blasius, H. 1913 Das Ahnlichkeitsgesetz bei Reibungvorgangen in Flussigkeiten. Forschg. Arb. Ing. 135.Google Scholar
Bradshaw, P. 2000 A note on ‘critical roughness height’ and ‘transitional roughness’. Phys. Fluids 12, 16111614.Google Scholar
Bauer, B. & Galavics, F. 1936 Untersuchungen über die Rohrreibung bei Heiβwasserfernleitungen. Archiv Waermewirtschaft 17 (5), 125126.Google Scholar
Chue, S. H. 1975 Pressue probes for fluid measurement. Prog. Aerospace Sci. 16 (2), 140.Google Scholar
Colebrook, C. F. 1939 Turbulent flow in pipes, with particular reference to the transitional region between smooth and rough wall laws. J. Inst. Civil Engrs 11, 133156.CrossRefGoogle Scholar
Colebrook, C. F. & White, C. M. 1937 Experiments with fluid friction in roughened pipes. Proc. R. Lond. Soc. A 161, 367378.Google Scholar
Flack, K. A., Schultz, M. P. & Shapiro, T. A. 2005 Experimental support for Townsend's Reynolds number similarity hypothesis on rough walls. Phys. Fluids 17, 035102.CrossRefGoogle Scholar
Galavics, F. 1939 Die Methode der Rauhigkeitscharakteristik zur Ermittlung der Rohrreibung in geraden Stahlrohr-Fernleitungen. Schweizer Archiv 5 (12), 337354.Google Scholar
Gersten, K., Papenfuss, H.-D., Kurschat, T., Genillon, P., FernandezPerez, F. Perez, F. & Revell, N. 2000 New transmission-factor formula proposed for gas pipelines. Oil & Gas J. 98 (7), 5862.Google Scholar
Gioia, G. & Chakraborty, P. 2006 Turbulent friction in rough pipes and the energy spectrum of the phenomenological theory. Phys. Rev. Lett. 96, 044502.CrossRefGoogle ScholarPubMed
Hama, F. R. 1954 Boundary-layer characteristics for smooth and rough surfaces. Trans SNAME 62, 333358.Google Scholar
Ito, H. 1959 Friction factors for turbulent flow in curved pipes. Trans. ASME: J. Basic Engng 6, 123.CrossRefGoogle Scholar
Kunkel, G. J. & Marusic, I. 2006 Study of the near-wall-turbulent region of the high-Reynolds-number boundary layer using an atmospheric flow. J. Fluid Mech. 548, 375402.CrossRefGoogle Scholar
Kunkel, G. J., Allen, J. J. & Smits, A. J. 2007 Further support for Townsend's Reynolds number similarity hypothesis in high Reynolds number rough-wall pipe flow. Phys. Fluids 19, 055109.CrossRefGoogle Scholar
Langelandsvik, L. I., Postvoll, W., Svendsen, P., Øverli, J. M. & Ytrehus, T. 2005 An evaluation of the friction factor formula based on operational data. Proc. 2005 PSIG Conference, San Antonio, Texas.Google Scholar
McKeon, B. J. & Smits, A. J. 2002 Static pressure correction in high Reynolds number fully developed turbulent pipe flow. Meas. Sci. Tech. 13, 16081614.CrossRefGoogle Scholar
McKeon, B. J., Li, J., Jiang, W., Morrison, J. F. & Smits, A. J. 2003 Pitot probe corrections in fully-developed turbulent pipe flow. Meas. Sci. Tech. 14, 14491458.Google Scholar
McKeon, B. J., Li, J., Jiang, W., Morrison, J. F. & Smits, A. J. 2004 Further observations on the mean velocity distribution in fully developed pipe flow. J. Fluid Mech. 501, 135147.CrossRefGoogle Scholar
McKeon, B. J, Zagarola, M. V. & Smits, A. J. 2005 A new friction factor relationship for fully developed pipe flow. J. Fluid Mech. 538, 429443.Google Scholar
Moody, L. F. 1944 Friction factors for pipe flow. Trans. ASME 66, 671684.Google Scholar
Nikuradse, J. 1933 Laws of flow in rough pipes. VDI Forschungsheft 361. Also NACA TM 1292, 1950.Google Scholar
Perry, A. E., Hafez, S. & Chong, M. S. 2001 A possible reinterpretation of the Princeton superpipe data. J. Fluid Mech. 439, 395401.Google Scholar
Prandtl, L. 1935 The mechanics of viscous fluids. In Aerodynamic Theory III (ed. Durand, W. F.), p. 142; also Collected Works II, pp. 819–845.Google Scholar
Shockling, M. A., Allen, J. J., Smits, A. J. 2006 Roughness effects in turbulent pipe flow. J. Fluid Mech. 564, 267285.CrossRefGoogle Scholar
Sletfjerding, E., Gudmundsson, J. S. & Sjøen, K. 1998 Flow experiments with high pressure natural gas in coated and plain pipes. Proceedings of the 1998 PSIG Conference Denver, Colorado.Google Scholar
Townsend, A. A. 1976 The Structure of Turbulent Shear Flow. Cambridge University Press.Google Scholar
Zagarola, M. V. 1996 Mean-flow scaling of turbulent pipe flow. Doctoral Dissertation, Princeton University.Google Scholar
Zagarola, M. V. & Smits, A. J. 1998 Mean-flow scaling of turbulent pipe flow. J. Fluid Mech. 373, 3379.Google Scholar