Hostname: page-component-78c5997874-t5tsf Total loading time: 0 Render date: 2024-11-05T10:03:41.220Z Has data issue: false hasContentIssue false

Flow and solute transport through a periodic array of vertical cylinders in shallow water

Published online by Cambridge University Press:  05 September 2014

Xiaoyu Guo
Affiliation:
Ministry of Education Key Laboratory of Hydrodynamics, School of Naval Architecture, Ocean & Civil Engineering, Shanghai Jiao Tong University, Shanghai, PR China
Benlong Wang
Affiliation:
Ministry of Education Key Laboratory of Hydrodynamics, School of Naval Architecture, Ocean & Civil Engineering, Shanghai Jiao Tong University, Shanghai, PR China
Chiang C. Mei*
Affiliation:
Ministry of Education Key Laboratory of Hydrodynamics, School of Naval Architecture, Ocean & Civil Engineering, Shanghai Jiao Tong University, Shanghai, PR China Department of Civil & Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139-4307, USA
*
Email address for correspondence: [email protected]

Abstract

A micro-mechanical theory is proposed for the prediction of macro-scale properties of flow and dispersion in a current through a periodic array of vertical cylinders standing on a horizontal bed. A two-scale analysis reduces the numerical task to the solution of two canonical boundary value problems in a unit cell. Using measured data on the drag coefficient measured for an array in open channels, the eddy viscosity in the interstitial flow on the micro-scale is calculated for a wide range of Reynolds numbers. The macro-scale relation between the mean velocity and the surface gradient is found in the form of a nonlinear Darcy’s law. The interstitial velocity is then used to derive the macro-scale convection diffusion equation for the solute concentration, also by a two-scale analysis. The Taylor dispersivity and the total effective diffusivity are computed for a wide range of flow rates and solid fractions. Features specific to the periodic geometry are pointed out.

Type
Papers
Copyright
© 2014 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alshare, A. A., Strykowski, P. J. & Simon, T. W. 2010 Modeling of unsteady and steady fluid flow, heat transfer and dispersion in porous media using unit cell scale. Intl J. Heat Mass Transfer 53, 22942310.CrossRefGoogle Scholar
Amaral Souto, H. P. & Moyne, C. 1997a Dispersion in two-dimensional periodic porous media. Part I. Hydrodynamics. Phys. Fluids 8, 22432252.CrossRefGoogle Scholar
Amaral Souto, H. P. & Moyne, C. 1997b Dispersion in two-dimensional periodic porous media. Part II. Dispersion tensor. Phys. Fluids 8, 22532263.CrossRefGoogle Scholar
Bagchi, P. & Balachandar, S. 2004 Response of the wake of an isolated particle to an isotropic turbulent flow. J. Fluid Mech. 518, 95123.CrossRefGoogle Scholar
Bear, J. 1988 Dynamics of Fluids in Porous Media. Dover.Google Scholar
Brenner, H. 1980 Dispersion resulting from flow through spatially periodic porous media. Phil. Trans. R. Soc. Lond. A 297, 81133.Google Scholar
Carbonell, R. G. & Whittaker, S. 1983 Dispersion in pulsed systems – II: theoretical development for passive dispersion in porous media. Chem. Engng Sci. 38, 17951802.CrossRefGoogle Scholar
Carman, P. C. 1937 Fluid flow throughout granular beds. Trans. Inst. Chem. Engrs 15, 150166.Google Scholar
Cheng, N. S. & Nguyen, H. T. 2011 Hydraulic radius for evaluating resistance induced by simulated emergent vegetation in open-channel flows. J. Hydraul. Engng ASCE 137 (9), 9951004.CrossRefGoogle Scholar
Eidsath, A., Carbonell, R. G., Whittaker, S. & Herman, L. R. 1983 Dispersion in pulsed systems – III: comparison between theory and experiments for packed beds. Chem. Engng Sci. 38, 18031816.CrossRefGoogle Scholar
Ene, H. L. & Sanchez-Palencia, E. 1975 Equations et phénoméne de surface pour l’ecoulement dan un modéle de milieu poreux. J. Méc. 4, 73108.Google Scholar
Fung, Y. C. 1965 Foundations of Solid Mechanics. Prentice-Hall.Google Scholar
Ghaddar, C. K. 1995 On the permeability of unidirectional fibrous media: a parallel computational approach. Phys. Fluids 7, 25632586.CrossRefGoogle Scholar
Keller, J. B. 1980 Darcy’s law for flow in porous media and the two space method. In Nonlinear Partial Differential Equations in Engineering and Applied Sciences (ed. Sternberg, R. L., Kalinowski, A. J. J. & Papadakis, J. S.), pp. 429443. Dekker.Google Scholar
Koch, D. L. & Brady, J. F. 1985 Dispersion in fixed beds. J. Fluid Mech. 154, 399427.CrossRefGoogle Scholar
Koch, D. L. & Brady, J. F. 1987 The symmetry properties of the effective diffusivity in anisotropic porous media. Phys. Fluids 30, 642650.CrossRefGoogle Scholar
Koch, D. L., Cox, R. G., Brenner, H. & Brady, J. F. 1989 The effect of order on dispersion in porous media. J. Fluid Mech. 200, 173188.CrossRefGoogle Scholar
Koch, D. L. & Ladd, A. J. C. 1997 Moderate Reynolds number flows through periodic and random arrays of aligned cylinders. J. Fluid Mech. 349, 3166.CrossRefGoogle Scholar
Lightbody, A. E. & Nepf, H. M. 2006a Prediction of velocity profiles and longitudinal dispersion in emergent salt marsh vegetation. Limnol. Oceanogr. 51, 218228.CrossRefGoogle Scholar
Lightbody, A. E. & Nepf, H. M. 2006b Prediction of near-field shear dispersion in an emergent canopy with heterogeneous morphology. Environ. Fluid Mech. 6, 477488.CrossRefGoogle Scholar
Liu, D., Diplas, P., Fairbanks, J. D. & Hodges, C. C. 2008 An experimental study of flow through rigid vegetation. J. Geophys. Res. 113, F04015-1-16.Google Scholar
Mattis, S., Dawson, C., Kees, C. & Farthing, M. 2012 Numerical modeling of drag for flow through vegetated domains and porous structures. Adv. Water Resour. 39, 4459.CrossRefGoogle Scholar
Mazda, Y., Kobashi, D. & Okada, S. 2005 Tidal-scale hydrodynamics within mangrove swamps. Wetlands Ecol. Manage. 13, 647655.CrossRefGoogle Scholar
Meftah, M. B. & Mossa, M. 2013 Prediction of channel flow characteristics through square arrays of emergent cylinders. Phys. Fluids 25, 045102-1-21.Google Scholar
Mei, C. C. 1992 Method of homogenization applied to dispersion in porous media. Trans. Porous Med. 9, 261274.CrossRefGoogle Scholar
Mei, C. C. & Auriault, J.-L. 1991 The effect of weak inertia on flow through a porous medium. J. Fluid Mech. 222, 647663.CrossRefGoogle Scholar
Mei, C. C., Chan, I. C. & Liu, P. L.-F. 2013 Waves of intermediate length through an array of vertical cylinders. Environ. Fluid Mech. 14, 235261.CrossRefGoogle Scholar
Mei, C. C., Chan, I. C., Liu, P. L.-F., Huang, Z. & Zhang, W. 2011 Long waves through emergent coastal vegetation. J. Fluid Mech. 687, 461491.CrossRefGoogle Scholar
Nepf, H. M. 1999 Drag, turbulence, and diffusion in flow through emergent vegetation. Water Resour. Res. 35 (2), 479489.CrossRefGoogle Scholar
Nepf, H. M., Sullivan, J. A. & Zavistoski, R. A. 1997 A model for diffusion within emergent vegetation. Limnol. Oceanogr. 42 (8), 17351745.CrossRefGoogle Scholar
Pope, S. 2000 Turbulent Flows, p. 95. Cambridge University Press.CrossRefGoogle Scholar
Raupach, M. R. & Thom, A. S. 1981 Turbulence in and above plant canopies. Annu. Rev. Fluid Mech. 13, 97129.CrossRefGoogle Scholar
Stoesser, T., Kim, S. J. & Diplas, P. 2010 Turbulent flow through idealized emergent vegetation. ASCE J. Hydraul. Engng 136 (12), 10031017.CrossRefGoogle Scholar
Su, X. H. & Li, C. W. 2002 Large eddy simulation of free surface turbulent flow in partly vegetated open channels. Intl J. Numer. Meth. Fluids 39, 919937.Google Scholar
Tanino, Y. & Nepf, H. M. 2008 Lateral dispersion in random cylinder arrays at high Reynolds number. J. Fluid Mech. 600, 339371.CrossRefGoogle Scholar
Tominaga, Y. & Stathopoulos, T. 2007 Turbulent Schmidt numbers for CFD analysis with various types of flow field. Atmos. Environ. 41, 80918099.CrossRefGoogle Scholar
Umidea, S. & Yang, W. J. 1999 Interaction of von Karman vortices and intersecting main streams in staggered tube bundles. Exp. Fluids 26, 389396.CrossRefGoogle Scholar
White, B. L. & Nepf, H. M. 2003 Scalar transport in random cylinder arrays at moderate Reynolds number. J. Fluid Mech. 487, 4379.CrossRefGoogle Scholar
Wilson, C. A. M. E., Yagci, O., Rauch, H.-P. & Olsen, N. R. B. 2006 3D numerical modeling of a willow-vegetated river/floodplain system. J. Hydrol. 327, 1321.CrossRefGoogle Scholar
Wodie, J.-C. & Levy, T. 1991 Correction nonlineare de la loi de Darcy. C. R. Acad. Sci. Paris 312, 157161.Google Scholar
Wolanski, E. 1992 Hydrodynamics of mangrove swamps and their coastal waters. Hydrobiologia 247, 141161.CrossRefGoogle Scholar
Wolanski, E., Jones, M. & Bunt, J. S. 1980 Hydrodynamics of a tidal creek-mangrove swamp system. Austral. J. Mar. Freshwat. Res. 31, 431450.CrossRefGoogle Scholar
Wu, J.-S. & Faeth, G. M. 1994a Sphere wakes at moderate Reynolds numbers in a turbulent environment. AIAA J. 32 (3), 535541.CrossRefGoogle Scholar
Wu, J.-S. & Faeth, G. M. 1994b Effect of ambient turbulence intensity on sphere wake at intermediate Reynolds numbers. AIAA J. 33 (1), 171173.CrossRefGoogle Scholar
Zdravkovich, M. M. 2000 Flow around Circular Cylinders, Vol. 2, Applications. Oxford University Press.Google Scholar
Zhang, M., Li, C. W. & Shen, Y. 2010 A 3D nonlinear $k$ $\epsilon $ turbulent model for prediction of flow and mass transport in channel with vegetation. Appl. Math. Model. 34, 10211031.CrossRefGoogle Scholar
Zhang, M., Li, C. W. & Shen, Y. 2013 Depth-averaged modeling of free surface flows in open channels with emerged and submerged vegetation. Appl. Math. Model. 37, 540553.CrossRefGoogle Scholar