Hostname: page-component-78c5997874-ndw9j Total loading time: 0 Render date: 2024-11-05T09:47:40.627Z Has data issue: false hasContentIssue false

The flat plate boundary layer. Part 1. Numerical integration of the Orr–-Sommerfeld equation

Published online by Cambridge University Press:  29 March 2006

R. Jordinson
Affiliation:
Department of Mathematics (Applied), University of Edinburgh

Abstract

Numerical space-amplified solutions of the Orr-Sommerfeld equation for the case of a boundary layer on a flat plate have been calculated for a wide range of values of frequency and Reynolds number. The mean flow is assumed to be parallel and given by the appropriate component of the Blasius solution. The results are presented in a form suitable for comparison with experiment and are also compared with calculations of earlier authors.

Type
Research Article
Copyright
© 1970 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Gaster, M. 1962 J. Fluid Mech. 14, 22.
Gaster, M. 1965 In Progress in Aeronautical Science, Vol. 6. Pergamon.
Kaplan, R. E. 1964 ASRL-TR-116–1, Cambridge Aerolastic and Structures Research Lab. Report M.I.T. (STAR N 64–29052).Google Scholar
Kurtz, E. F. 1961 Ph.D. Thesis, Dept of Mechanical Engineering M.I.T. (See also Kurtz, E. F. & Crandall, S. H. 1962 J. Math. Phys. 41, 26.)
Lin, C. C. 1945 Quart. Appl. Math. 3, 117, 218, 277.
Numerov, B. V. 1924 Mon. Not. R. Astr. Soc. 84, 59.
Obremski, H. J., Morkovin, M. V. & Landahl, M. 1969 AGARDograph 134, NATO, Paris.
Osborne, M. R. 1964 Comput. J. 7, 3, 228.
Osborne, M. R. 1967 SIAM J. Appl. Math. 15, 3, 539.
Schlichting, H. 1935 Nachr. Ges. Wiss. Göttingen. Math. Phys. Kl. Fachgruppe. 1, no. 4, 4778.
Shen, S. F. 1954 J. Aero. Soc. 21, 6.
Wazzan, A. R., Okamura, T. T. & Smith, A. M. O. 1968 Douglas Aircraft Company, Report no. DAC–67086.