Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-26T15:14:51.410Z Has data issue: false hasContentIssue false

Fast transient microjets induced by hemispherical cavitation bubbles

Published online by Cambridge University Press:  12 February 2015

Silvestre Roberto Gonzalez Avila*
Affiliation:
Nanyang Technological University, School of Physical and Mathematical Sciences, Division of Physics and Applied Physics, 21 Nanyang Link, Singapore 637371, Singapore Nanyang Technological University, Civil and Environmental Engineering, N11-01a-22, 50 Nanyang Avenue, Singapore 639798, Singapore
Chaolong Song
Affiliation:
Nanyang Technological University, School of Physical and Mathematical Sciences, Division of Physics and Applied Physics, 21 Nanyang Link, Singapore 637371, Singapore
Claus-Dieter Ohl
Affiliation:
Nanyang Technological University, School of Physical and Mathematical Sciences, Division of Physics and Applied Physics, 21 Nanyang Link, Singapore 637371, Singapore
*
Email address for correspondence: [email protected]

Abstract

We report on a novel method to generate fast transient microjets and study their characteristics. The simple device consists of two electrodes on a substrate with a hole in between. The side of the substrate with the electrodes is submerged in a liquid. Two separate microjets exit through the tapered hole after an electrical discharge is induced between the electrodes. They are formed during the expansion and collapse of a single cavitation bubble. The cavitation bubble dynamics as well as the jets were studied with high-speed photography at up to 500 000 f.p.s. With increasing jet velocity they become unstable and spray formation is observed. The jet created during expansion (first jet) is in most cases slower than the jet created during bubble collapse, which can reach up to $400~\text{m}~\text{s}^{-1}$. The spray exiting the orifice is at least in part due to the presence of cavitation in the microchannel as observed by high-speed recording. The effect of viscosity was tested using silicone oil of 10, 50 and 100 cSt. Interestingly, for all liquids the transition from a stable to an unstable jet occurs at $We\sim 4600$. We demonstrate that these microjets can penetrate into soft material; thus they can be potentially used as a needleless drug delivery device.

Type
Papers
Copyright
© 2015 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ahearne, M., Yang, Y., El Haj, A. J., Then, K. Y. & Liu, K. K. 2005 Characterizing the viscoelastic properties of thin hydrogel-based constructs for tissue engineering applications. J. R. Soc. Interf. 2, 455463.CrossRefGoogle ScholarPubMed
Alexander, R. M. 2006 Principles of Animal Locomotion. Princeton University Press.Google Scholar
Ando, K., Liu, A. Q. & Ohl, C. D. 2012 Homogeneous nucleation in water in microfluidic channels. Phys. Rev. Lett. 109, 044501.Google Scholar
Arora, A., Hakim, I., Baxter, J., Rathnasingham, R., Srinivasan, R., Fletcher, D. A. & Mitragotri, S. 2007 Needle-free delivery of macromolecules across the skin by nanoliter-volume pulsed microjets. Proc. Natl Acad. Sci. USA 104, 42554260.CrossRefGoogle ScholarPubMed
Biewener, A. A. 2003 Animal Locomotion. Oxford University Press.Google Scholar
Bogy, D. B. 1979 Drop formation in a circular liquid jet. Annu. Rev. Fluid Mech. 11, 207228.Google Scholar
Brennen, C. E. 1995 Cavitation and Bubble Dynamics, Oxford Engineering Science Series, vol. 44, p. 282. Oxford University Press.Google Scholar
Chaves, H., Knapp, M., Kubitzek, A., Obermeier, F. & Schneider, T.1995 Experimental study of cavitation in the nozzle hole of diesel injectors using transparent nozzles. SAE Tech. Paper. Paper #95020, International Congress and Exposition Detroit, Michigan, February 27–March 2, 1995, doi:10.4271/950290.CrossRefGoogle Scholar
Dijkink, R. & Ohl, C. D. 2008 Laser-induced cavitation based micropump. Lab on a Chip 8, 16761681.Google Scholar
Eggers, J. & Villermaux, E. 2008 Physics of liquid jets. Rep. Prog. Phys. 71, 036601.Google Scholar
Fletcher, D. A. & Palanker, D. V. 2001 Pulsed liquid microjet for microsurgery. Appl. Phys. Lett. 78, 19331935.Google Scholar
Fletcher, D. A., Palanker, D. V., Huie, P., Miller, J., Marmor, M. F. & Blumenkranz, M. S. 2002 Intravascular drug delivery with a pulsed liquid microjet. Arch. Ophthalmol. 120, 12061208.Google Scholar
Ganippa, L. C., Bark, G., Andersson, S. & Chomiak, J. Cavitation: a contributory factor in the transition from symmetric to asymmetric jets in cross-flow nozzles. Exp. Fluids 36 (4), 627634.Google Scholar
Giannadakis, E., Gavaises, M. & Arcoumanis, C. 2008 Modelling of cavitation in diesel injector nozzles. J. Fluid Mech. 616, 153193.Google Scholar
Gonzalez-Avila, S. R., Khoo, B. C., Klaseboer, E. & Ohl, C.-D. 2011 Cavitation bubble dynamics in a liquid gap of variable height. J. Fluid Mech. 682, 241260.Google Scholar
Grant, R. P. & Middleman, S. 1966 Newtonian jet stability. AIChE J. 2, 669678.CrossRefGoogle Scholar
Han, T. H., Hah, J. M. & Yoh, J. J. 2011 Drug injection into fat tissue with a laser based microjet injector. J. Appl. Phys. 109, 093105.Google Scholar
van Hoeve, W., Gekle, S., Snoeijer, J. H., Versluis, M., Brenner, M. P. & Lohse, D. 2010 Breakup of diminutive Rayleigh jets. Phys. Fluids 22 (12), 122003.Google Scholar
Jagadeesh, G., Prakash, G. D., Rakesh, S. G., Allam, U. S., Krishna, M. G., Eswarappa, S. M. & Chakravortty, D. 2011 Needleless vaccine delivery using micro-shock waves. Clin. Vaccine Immunology 18, 539545.Google Scholar
Joseph, D. D. 1998 Cavitation and the state of stress in a flowing liquid. J. Fluid Mech. 366, 367378.Google Scholar
Karri, B., Gonzalez-A, S. R. G., Loke, Y. C., O’Shea, S. J., Klaseboer, E., Khoo, B. C. & Ohl, C. D. 2012a High-speed jetting and spray formation from bubble collapse. Phys. Rev. E 85, 015303.Google Scholar
Karri, B., Ohl, S.-W., Klaseboer, E., Ohl, C.-D. & Khoo, B. C. 2012b Jets and sprays arising from a spark-induced oscillating bubble near a plate with a hole. Phys. Rev. E 86, 036309.Google Scholar
Lew, K. S. F., Klaseboer, E. & Khoo, B. C. 2007 A collapsing bubble-induced micropump: An experimental study. Sensors Actuators A 133, 161172.CrossRefGoogle Scholar
Lide, D. R. 2004 Handbook of Chemistry and Physics. CRC Press.Google Scholar
Lin, S. P. & Reitz, R. D. 1998 Drop and spray formation from a liquid jet. Annu. Rev. Fluid Mech. 30, 85105.Google Scholar
Mitragotri, S. 2006 Innovation – Current status and future prospects of needle-free liquid jet injectors. Nat. Rev. Drug Discov. 5, 543548.Google Scholar
Nayar, V. T., Weiland, J. D., Nelson, C. S. & Hodge, A. M. 2012 Elastic and viscoelastic characterization of agar. J. Mech. Behavior Biomed. Mater. 7, 6068.Google Scholar
Pailler-Mattei, C., Bec, S. & Zahouani, H. 2008 In vivo measurements of the elastic mechanical properties of human skin by indentation tests. Med. Engng Phys. 30, 599606.CrossRefGoogle ScholarPubMed
Payri, F., Bermudez, V., Payri, R. & Salvador, F. J. 2004 The influence of cavitation on the internal flow and the spray characteristics in diesel injection nozzles. Fuel 83, 419431.CrossRefGoogle Scholar
Reitz, R. D. & Bracco, F. V. 1982 Mechanism of atomization of a liquid jet. Phys. Fluids 25 (622), 17301742.Google Scholar
Reitz, R. D. & Bracco, F. V. 1986 Mechanisms of breakup of round liquid jets. In The Encyclopedia of Fluid Mechanics. Gulf Publishing Company.Google Scholar
Schramm, J. & Mitragotri, S. 2002 Transdermal drug delivery by jet injectors: Energetics of jet formation and penetration. Pharmaceut. Res. 19, 16731679.Google Scholar
Schramm-Baxter, J. & Mitragotri, S. 2004 Needle-free jet injections: dependence of jet penetration and dispersion in the skin on jet power. J. Control. Release 97, 527535.Google Scholar
Stachowiak, J. C., Li, T. H., Arora, A., Mitragotri, S. & Fletcher, D. A. 2009 Dynamic control of needle-free jet injection. J. Control. Release 135, 104112.Google Scholar
Stachowiak, J. C., Von Muhlen, M. G., Li, T. H., Jalilian, L., Parekh, S. H. & Fletcher, D. A. 2007 Piezoelectric control of needle-free transdermal drug delivery. J. Control. Release 124, 8897.Google Scholar
Tagawa, Y., Oudalov, N., El Ghalbzouri, A., Sun, C. & Lohse, D. 2013 Needle-free injection into skin and soft matter with highly focused microjets. Lab on a Chip 13, 13571363.Google Scholar
Tagawa, Y., Oudalov, N., Visser, C. W., Peters, I. R., Van der Meer, D., Sun, C., Prosperetti, A. & Lohse, D. 2012 Highly focused supersonic microjets. Phys. Rev. X 2, 031002.Google Scholar
Tellini, B. & Giannetti, R.1998 Current measurement in electrical discharges in air gaps for conducted noise estimation. Instrumentation and Measurement Technology Conference, 1998. IMTC/98. Conference Proceedings. IEEE.Google Scholar
Van Ouwerkerk, H. J. 1971 The rapid growth of a vapour bubble at a liquid–solid interface. Intl J. Heat Mass Transfer 14, 14151431.Google Scholar
Van Ouwerkerk, H. J. 1972 Hemispherical bubble growth in a binary mixture. Chem. Engng Sci. 27, 19571967.Google Scholar
Vogel, A., Noack, J., Nahen, K., Theisen, D., Busch, S., Parlitz, U., Hammer, D. X., Noojin, G. D., Rockwell, B. A. & Birngruber, R. 1999 Energy balance of optical breakdown in water at nanosecond to femtosecond time scales. Appl. Phys. B 68, 271280.CrossRefGoogle Scholar