Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2025-01-04T04:57:09.042Z Has data issue: false hasContentIssue false

The fascination of fluid mechanics

Published online by Cambridge University Press:  20 April 2006

D. H. Peregrine
Affiliation:
School of Mathematics, University of Bristol, Bristol BS8 1TW, England

Abstract

Two topics are discussed in order to illustrate the author's own enjoyment of fluid mechanics. The first and longer discourse is about splashes. It makes no attempt at completeness but includes a little new research. The second part deals briefly with many variations on the theme of flow in pipes.

Type
Research Article
Copyright
© 1981 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alvarez, L. W., Alvarez, W., Asaro, F. & Michel, H. V. 1980 Extraterrestrial cause for Cretaceous-Tertiary extinction. Science 208, 10951108.Google Scholar
Baird, M. H. I. 1960 The stability of inverse bubbles. Trans. Faraday Soc. 56, 213219.Google Scholar
Batchelor, G. K. 1967 An Introduction to Fluid Dynamics. Cambridge University Press.
Bellhouse, B. J. et al. 1973 Trans. Amer. Soc. Artif. Int. Organs 19, 7779.
Berker, R. 1963 Intégration des équations du mouvement d'un fluide visqueux incompressible. Encycl. of Physics, vol. 8 no. 2 (ed. S. Flügge). Springer.
Berman, N. S. 1978 Drag reduction by polymers. Ann. Rev. Fluid Mech. 10, 4764.Google Scholar
Bird, R. B., Armstrong, R. C. & Hassager, O. 1977 Dynamics of Polymeric Liquids. vol. 1. Fluid Mechanics. Wiley.
Brocher, E. & Maresca, C. 1973 Études des phénomènes thermiques dans un tube de Hartmann-Sprenger. Int. J. Heat Mass Transfer 16, 529548.Google Scholar
Chisholm, D. 1973 The heat pipe. M. & B. Tech. Libr. TL/ME/2. Mills and Boon Ltd.
Dettleff, G., Thompson, P. A., Meier, G. E. A. & Speckmann, H. D. 1979 An experimental study of liquefaction shock waves. J. Fluid Mech. 95, 279304.Google Scholar
Dombrowski, N. & Fraser, R. P. 1954 A photographic investigation into the disintegration of liquid sheets. Phil. Trans. Roy. Soc. A 247, 101130.Google Scholar
Donaldson, C. du P. & Sullivan, R. D. 1960 Behaviour of solutions of the Navier-Stokes equations for a complete class of three-dimensional viscous vortices. Proc. 1960 Heat Transfer and Fluid Mech. Inst., pp. 1630. Stanford University Press.
Escudier, M. P., Bornstein, J. & Zehnder, N. 1980 Observations and L.D.A. measurements of confined turbulent vortex flow. J. Fluid Mech. 98, 4963.Google Scholar
Faler, J. H. & Leibovich, S. 1978 An experimental map of the internal structure of a vortex breakdown. J. Fluid Mech. 86, 313335.Google Scholar
Fletcher, N. H. 1979 Air flow and sound generation in musical wind instruments. Ann. Rev. Fluid Mech. 11, 123146.Google Scholar
Fornberg, B. 1980 A numerical study of steady viscous flow past a circular cylinder. J. Fluid Mech. 98, 819855.Google Scholar
Fraser, R. P., Eisenklam, P., Dombrowski, N. & Hasson, D. 1962 Drop formation from rapidly moving liquid sheets. A.I. Ch. E. J. 8, 672680.Google Scholar
Fujikawa, S. & Akamatsu, T. 1980 Effects of the non-equilibrium condensation of vapour on the pressure wave produced by the collapse of a bubble in a liquid. J. Fluid Mech. 97, 481512.Google Scholar
Ganapathy, R. 1980 A major meteorite impact on the earth 65 million years ago: evidence from the Cretaceous-Tertiary boundary clay. Science 209, 921923.Google Scholar
Gibson, A. H. 1930 Hydraulics and Its Applications, 4th edn. London: Constable.
Hall, M. G. 1972 Vortex breakdown. Ann. Rev. Fluid Mech. 4, 195218.Google Scholar
Hopkinson, B. 1898 On discontinuous fluid motions involving sources and vortices. Proc. Lond. Math. Soc. 29, 142164, and Scientific Papers, 321. Cambridge University Press, 1921.
Jeffery, G. B. 1915 The two-dimensional steady motion of a viscous fluid. Phil. Mag. 29 (6), 455465.Google Scholar
Jeffrey, D. J. & Sherwood, J. D. 1980 Streamline patterns and eddies in low-Reynoldsnumber flow. J. Fluid Mech. 96, 315334.Google Scholar
Koromilas, D. A. & Telionis, D. P. 1980 Unsteady laminar separation: an experimental study. J. Fluid Mech. 97, 347384.Google Scholar
Kent, E. L. 1977 Musical Acoustics: Piano and Wind Instruments. vol. 9 Benchmark Papers in Acoustics. Pennsylvania: Dowden Hutchinson & Ross.
Landau, L. D. & Lifshitz, E. M. 1959 Fluid Mechanics. Pergamon.
Lane, W. R. & Green, H. L. 1956 The mechanics of drops and bubbles. In Surveys in Mechanics (eds. G. K. Batchelor & R. M. Davies), 162215. Cambridge University Press.
Lavan, Z. & Fejer, A. A. 1965 Luminescence in supersonic swirling flows. J. Fluid Mech. 23, 173183.Google Scholar
Lighthill, M. J. 1960 Note on the swimming of slender flish. J. Fluid Mech. 9, 306317.Google Scholar
Longuet-Higgins, M. S. & Cokelet, E. D. 1976 The deformation of steep surface waves on water. I. A numerical method of computation. Proc. Roy. Soc. A 350, 126.Google Scholar
Metenin, V. 1960 Experimental investigation of the operation of a vortex refrigerator (extended abstract of paper in Russian, Cholodilnaya Technika, 1959, 4, 15–20). J. Refrigeration 3, March/April, 4547.Google Scholar
Miller, D. J. 1960 Giant Waves in Lituya Bay, Alaska. Geological Survey Professional Paper 354-C, pp. 5158.
Milne-Thomson, L. M. 1960 Theoretical Hydrodynamics, 4th edn. MacMillan.
Möllo-Christensen, E. L. 1969 Flow Instabilities. Film, and film notes. Nat. Comm. for Fluid Mech. Films, Encycl. Britannica Educ. Corp., Chicago.
Nicholson, M. M. 1948 The interaction between floating particles. Proc. Camb. Phil. Soc. 45, 288295.Google Scholar
Parulekar, B. B. 1961 The short vortex tube. J. Refrigeration 4, July/August, 7480.Google Scholar
Peregrine, D. H. 1981 A note on the steady high-Reynolds-number flow about a circular cylinder. Unpublished manuscript.
Peregrine, D. H., Cokelet, E. D. & McIver, P. 1980 The fluid mechanics of waves approaching breaking. Proc. 17th Conf. Coastal Engng. A.S.C.E.
Pierrehumbert, R. T. 1980 A family of steady, translating vortex pairs with distributed vorticity. J. Fluid Mech. 99, 129144. Corrigendum, 102, 478.Google Scholar
Rayleigh, Lord 1945 The Theory of Sound, 2nd edn. Dover.
Reynolds, O. 1883 An experimental investigation of the circumstances which determine whether the motion of water shall be direct or sinuous, and of the law of resistance in parallel channels. Phil. Trans. Roy. Soc. See also Scientific Papers, vol. 2, 51105, Cambridge University Press, 1901.
Rockwell, D. & Naudascher, E. 1979 Self-sustained oscillations of impinging free shear layers. Ann. Rev. Fluid Mech. 11, 6794.Google Scholar
Shapiro, A. H. 1953 The Dynamics and Thermodynamics of Compressible Fluid Flow, vols. I and II. New York: Roland.
Sibulkin, M. 1962 Unsteady, viscous, circular flow. Part 3. Application to the Ranque-Hilsch vortex tube. J. Fluid Mech. 12, 269293.Google Scholar
Smit, J. & Hertogen, J. 1980 An extraterrestrial event at the Cretaceous-Tertiary boundary. Nature 285, 198200.Google Scholar
Smith, F. T. 1979 Laminar flow of an incompressible fluid past a bluff body: the separation, reattachment, eddy properties and drag. J. Fluid Mech. 92, 171205.Google Scholar
Smith, R. A. & Mercer, D. A. 1979 Recent work on musical acoustics. Rep. Prog. Phys. 42, 10851129.Google Scholar
Sobey, I. J. 1980 On flow through furrowed channels, Part 1. Calculated flow patterns. J. Fluid Mech. 96, 126.Google Scholar
Stephanoff, K. D., Sobey, I. J. & Bellhouse, B. J. 1980 On flow through furrowed channels. Part 2. Observed flow patterns. J. Fluid Mech. 96, 2732.Google Scholar
Stewart, R. W. 1969 Turbulence. Film, Nat. Comm. for Fluid Mech. Films, Encl. Britannica Educ. Corp., Chicago.
Williams, J. C. 1977 Incompressible boundary-layer separation. Ann. Rev. Fluid Mech. 9, 113144.Google Scholar
Worthington, A. M. 1897 Impact with a liquid surface, studied by the aid of instantaneous photography. Phil. Trans. Roy. Soc. A 189, 137148.Google Scholar
Worthington, A. M. 1908 A Study of Splashes. Longmans.