Hostname: page-component-669899f699-rg895 Total loading time: 0 Render date: 2025-04-25T06:10:11.017Z Has data issue: false hasContentIssue false

Exploring from classical vertical convection to magnetoconvection: statistical properties of dissipation and scaling relations

Published online by Cambridge University Press:  21 April 2025

Hai-Tao Zhu
Affiliation:
School of Engineering Science, University of Chinese Academy of Sciences, Beijing 101408, PR China
Long Chen
Affiliation:
School of Engineering Science, University of Chinese Academy of Sciences, Beijing 101408, PR China State Key Laboratory of Nonlinear Mechanics, Institute of Mechanics and University of Chinese Academy of Sciences, Beijing 101408, PR China
Kai-Yun Qin
Affiliation:
School of Engineering Science, University of Chinese Academy of Sciences, Beijing 101408, PR China
Ming-Jiu Ni*
Affiliation:
School of Engineering Science, University of Chinese Academy of Sciences, Beijing 101408, PR China State Key Laboratory of Nonlinear Mechanics, Institute of Mechanics and University of Chinese Academy of Sciences, Beijing 101408, PR China
*
Corresponding author: Ming-Jiu Ni, [email protected]

Abstract

We investigate the statistical properties of kinetic and thermal dissipation rates in two-dimensional/three-dimensional vertical convection of liquid metal ($Pr = 0.032$) within a square cavity. Two situations are specifically discussed: (i) classical vertical convection with no external forces and (ii) vertical magnetoconvection with a horizontal magnetic field. Through an analysis of dissipation fields and a reasonable approximation of buoyancy potential energy sourced from vertical heat flux, the issue of the ‘non-closure of the dissipation balance relation’, which has hindered the application of the GL theory in vertical convection, is partially resolved. The resulting asymptotic power laws are consistent with existing laminar scaling theories and even show certain advantages in validating simulations with large Prandtl number ($Pr$). Additionally, a full-parameter model and prefactors applicable to low-$Pr$ fluids are provided. The extension to magnetoconvection naturally introduces the approximate expression for total buoyancy potential energy and necessitates adjustments to the contributions of kinetic dissipation in both the bulk and boundary layer. The flow dimensionality and boundary layer thickness are key considerations in this analysis. The comprehension of Joule dissipation has been updated: the Lorentz force generates positive dissipation in the bulk by suppressing convection, while in the Hartmann layer, shaping the exponential boundary layer requires the fluid to perform positive work to accelerate, leading to negative dissipation. Finally, the proposed transport equations for magnetoconvection are supported by current direct numerical simulation (DNS) and literature data, and the applicability of the model is discussed.

Type
JFM Papers
Copyright
© The Author(s), 2025. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

Footnotes

These authors contributed equally to this work.

References

Ahlers, G., Grossmann, S. & Lohse, D. 2009 Heat transfer and large scale dynamics in turbulent Rayleigh–Benard convection. Rev. Mod. Phys. 81 (2), 503537.CrossRefGoogle Scholar
Akhmedagaev, R., Zikanov, O., Krasnov, D. & Schumacher, J. 2020 Turbulent Rayleigh–Bénard convection in a strong vertical magnetic field. J. Fluid Mech. 895, R4.CrossRefGoogle Scholar
Bader, S.H. & Zhu, X. 2023 Scaling relations in quasi-static magnetoconvection with a strong vertical magnetic field. J. Fluid Mech. 976, A4.CrossRefGoogle Scholar
Baker, N., Potherat, A., Davoust, L. & Debray, F. 2018 Inverse and direct energy cascades in three-dimensional magnetohydrodynamic turbulence at low magnetic Reynolds number. Phys. Rev. Lett. 120 (22), 224502.CrossRefGoogle ScholarPubMed
Batchelor, G.K. 1959 Small-scale variation of convected quantities like temperature in turbulent fluid Part 1. General discussion and the case of small conductivity. J. Fluid. Mech. 5 (1), 113133.CrossRefGoogle Scholar
Busse, F. & Clever, R. 1983 Stability of convection rolls in the presence of a horizontal magnetic field. Journal de Mecanique Theroique et Applique 2 (4), 495502.Google Scholar
Chakraborty, S. 2008 On scaling laws in turbulent magnetohydrodynamic Rayleigh–Benard convection. Physica D: Nonlinear Phenom. 237 (24), 32333236.CrossRefGoogle Scholar
Chandrasekhar, S. 1961 Hydrodynamic and Hydromagnetic Stability. Clarendon Press.Google Scholar
Chen, L., Liu, B.-Q. & Ni, M.-J. 2018 Study of natural convection in a heated cavity with magnetic fields normal to the main circulation. Intl J. Heat Mass Transfer 127, 267277.CrossRefGoogle Scholar
Chen, L., Potherat, A., Ni, M.-J. & Moreau, R. 2021 Direct numerical simulation of quasi-two-dimensional MHD turbulent shear flows. J. Fluid Mech. 915, A130.CrossRefGoogle Scholar
Chen, L., Wang, Z.-B. & Ni, M.-J. 2024 Effects of horizontal magnetic fields on turbulent Rayleigh–Bénard convection in a cuboid vessel with aspect ratio $\boldsymbol {\Gamma} = 5$ . J. Fluid Mech. 980, A24.CrossRefGoogle Scholar
Ching, E.S.C. 2023 Heat flux and wall shear stress in large-aspect-ratio turbulent vertical convection. Phys. Rev. Fluids 8 (2), L022601.CrossRefGoogle Scholar
Davidson, P.A. 2001a Dynamics at low magnetic reynolds numbers. In An Introduction to Magnetohydrodynamics, pp. 117158. Cambridge University Press.CrossRefGoogle Scholar
Davidson, P.A. 2001b MHD turbulence at low rm. In An Introduction to Magnetohydrodynamics, pp. 418421. Cambridge University Press.CrossRefGoogle Scholar
Emran, S. & Schumacher, J. 2008 Fine-scale statistics of temperature and its derivatives in convective turbulence. J. Fluid Mech. 611, 1334.CrossRefGoogle Scholar
Emran, S. & Schumacher, J. 2015 Large-scale mean patterns in turbulent convection. J. Fluid Mech. 776, 96108.CrossRefGoogle Scholar
Grossmann, S. & Lohse, D. 2000 Scaling in thermal convection: a unifying view. J. Fluid Mech. 407, 2756.CrossRefGoogle Scholar
Grossmann, S. & Lohse, D. 2001 Thermal convection for large Prandtl numbers. Phys. Rev. Lett. 86 (15), 33163319.CrossRefGoogle ScholarPubMed
Grossmann, S. & Lohse, D. 2002 Prandtl and Rayleigh number dependence of the Reynolds number in turbulent thermal convection. Phys. Rev. E: Stat. Nonlinear Soft Matt. Phys. 66 (1), 016305.CrossRefGoogle ScholarPubMed
Grossmann, S. & Lohse, D. 2004 Fluctuations in turbulent Rayleigh–Bénard convection: the role of plumes. Phys. Fluids 16 (12), 44624472.CrossRefGoogle Scholar
Guo, X., Wang, B., Wu, J.-Z., Chong, K.L. & Zhou, Q. 2022 Turbulent vertical convection under vertical vibration. Phys. Fluids 34 (5), 055106.CrossRefGoogle Scholar
He, J., Bao, Y. & Chen, X. 2022 Scaling transition of thermal dissipation in turbulent convection. Phys. Fluids 35 (1), 015126.CrossRefGoogle Scholar
Howland, C., Ng, C.S. & Lohse, D. 2022 Boundary layers in turbulent vertical convection at high Prandtl number. J. Fluid Mech. 930, A32.CrossRefGoogle Scholar
Kaczorowski, M. & Wagner, C. 2009 Analysis of the thermal plumes in turbulent Rayleigh–Bénard convection based on well-resolved numerical simulations. J. Fluid Mech. 618, 89112.CrossRefGoogle Scholar
Khoubani, A., Mohanan, A.V., Augier, P. & Flór, J.-B. 2024 Vertical convection regimes in a two-dimensional rectangular cavity: Prandtl and aspect ratio dependence. J. Fluid Mech. 981, A10.CrossRefGoogle Scholar
Lim, Z., Chong, K.L., Ding, G.-Y. & Xia, K.-Q. 2019 Quasistatic magnetoconvection: heat transport enhancement and boundary layer crossing. J. Fluid Mech. 870, 519542.CrossRefGoogle Scholar
Liu, W., Krasnov, D. & Schumacher, J. 2018 Wall modes in magnetoconvection at high Hartmann numbers. J. Fluid Mech. 849, R2.CrossRefGoogle Scholar
Lohse, D. & Shishkina, O. 2024 Ultimate Rayleigh-Benard turbulence. Rev. Mod. Phys. 96 (3), 035001.CrossRefGoogle Scholar
Lüdemann, K. & Tilgner, A. 2022 Transition to three-dimensional flow in thermal convection with spanwise rotation. Phys. Rev. Fluids 7 (6), 063502.CrossRefGoogle Scholar
Ng, C.S., Chung, D. & Ooi, A. 2013 Turbulent natural convection scaling in a vertical channel. Intl J. Heat Fluid Flow 44, 554562.CrossRefGoogle Scholar
Ng, C.S., Ooi, A., Lohse, D. & Chung, D. 2015 Vertical natural convection: application of the unifying theory of thermal convection, J. Fluid Mech. 764, 349361.CrossRefGoogle Scholar
Ng, C.S., Ooi, A., Lohse, D. & Chung, D. 2017 Changes in the boundary-layer structure at the edge of the ultimate regime in vertical natural convection. J. Fluid Mech. 825, 550572.CrossRefGoogle Scholar
Ng, C.S., Ooi, A., Lohse, D. & Chung, D. 2018 Bulk scaling in wall-bounded and homogeneous vertical natural convection. J. Fluid Mech. 841, 825850.CrossRefGoogle Scholar
Ni, M.-J., Munipalli, R., Huang, P., Morley, N.B. & Abdou, M.A. 2007 A current density conservative scheme for incompressible MHD flows at a low magnetic Reynolds number. Part II: On an arbitrary collocated mesh. J. Comput. Phys. 227 (1), 205228.CrossRefGoogle Scholar
Nicoski, J., Yan, M. & Calkins, M. 2022 Quasistatic magnetoconvection with a tilted magnetic field. Phys. Rev. Fluids 7 (4), 043504.CrossRefGoogle Scholar
Okada, K. & Ozoe, H. 1992 Experimental heat transfer rates of natural convection of molten gallium suppressed under an external magnetic field in either the X, Y, or Z direction. J. Heat Transfer 114 (1), 107114.CrossRefGoogle Scholar
Potherat, A. & Klein, R. 2014 Why, how and when MHD turbulence at low becomes three-dimensional. J. Fluid Mech. 761, 168205.CrossRefGoogle Scholar
Ravi, M.R., Henkes, R.A.W.M. & Hoogendoorn, C. 1994 On the high-Rayleigh-number structure of steady laminar natural-convection flow in a square enclosure. J. Fluid Mech. 262, 325351.CrossRefGoogle Scholar
Scheel, J. & Schumacher, J. 2016 Global and local statistics in turbulent convection at low Prandtl numbers. J. Fluid Mech. 802, 147173.CrossRefGoogle Scholar
Shercliff, J. 1956 Steady motion of conducting fluid in a pipe under transverse magnetic fields. J. Fluid Mech. 1 (06), 644666.CrossRefGoogle Scholar
Shishkina, O. 2016 Momentum and heat transport scalings in laminar vertical convection. Phys. Rev. E 93 (5), 051102.CrossRefGoogle ScholarPubMed
Shishkina, O. 2021 Rayleigh–Benard convection: the container shape matters. Phys. Rev. Fluids 6 (9), 090502.CrossRefGoogle Scholar
Shishkina, O., Emran, S., Grossmann, S. & Lohse, D. 2017 Scaling relations in large-Prandtl-number natural thermal convection. Phys. Rev. Fluids 2 (10), 103502.CrossRefGoogle Scholar
Shishkina, O., Grossmann, S. & Lohse, D. 2016 Heat and momentum transport scalings in horizontal convection. Geophys. Res. Lett. 43 (3), 1219.CrossRefGoogle Scholar
Siggia, E.D. 1994 High Rayleigh number convection. Annu. Rev. Fluid Mech. 26 (1), 137168.CrossRefGoogle Scholar
Sommeria, J. & Moreau, R. 1982 Why, how, and when MHD turbulence becomes two-dimensional. J. Fluid Mech. 118, 507518.CrossRefGoogle Scholar
Stevens, R., Poel, E., Grossmann, S. & Lohse, D. 2013 The unifying theory of scaling in thermal convection: the updated prefactors. J. Fluid Mech. 730, 295308.CrossRefGoogle Scholar
Tasaka, Y., Yanagisawa, T., Fujita, K., Miyagoshi, T. & Sakuraba, A. 2021 Two-dimensional oscillation of convection roll in a finite liquid metal layer under a horizontal magnetic field. J. Fluid Mech. 911, A19.CrossRefGoogle Scholar
Teimurazov, A., McCormack, M., Linkmann, M. & Shishkina, O. 2024 Unifying heat transport model for the transition between buoyancy-dominated and Lorentz-force-dominated regimes in quasistatic magnetoconvection. J. Fluid Mech. 980.CrossRefGoogle Scholar
Venugopal, V., De, A. & Mishra, P. 2022 Statistics of thermal plumes and dissipation rates in turbulent Rayleigh-Benard convection in a cubic cell. Intl J. Heat Mass Transfer 182, 121995.Google Scholar
Versteegh, T.A.M. & Nieuwstadt, F.T.M. 1999 A direct numerical simulation of natural convection between two infinite vertical differentially heated walls scaling laws and wall functions. Intl J. Heat Mass Transfer 42 (19), 36733693.CrossRefGoogle Scholar
Vogt, T., Ishimi, W., Yanagisawa, T., Tasaka, Y., Sakuraba, A. & Eckert, S. 2018 Transition between quasi-two-dimensional and three-dimensional Rayleigh-Benard convection in a horizontal magnetic field. Phys. Rev. Fluids 3 (1), 013503.CrossRefGoogle Scholar
Vogt, T., Yang, J.-C., Schindler, F. & Eckert, S. 2021 Free-fall velocities and heat transport enhancement in liquid metal magneto-convection. J. Fluid Mech. 915, A68.CrossRefGoogle Scholar
Wang, Q., Liu, H., Shishkina, O. & Lohse, D. 2021 Regime transitions in thermally driven high-Rayleigh number vertical convection. J. Fluid Mech. 917, A6.CrossRefGoogle Scholar
Wang, Q., Lohse, D. & Shishkina, O. 2021 Scaling in internally heated convection: a unifying theory. Geophys. Res. Lett. 48 (4), e2020GL091198.CrossRefGoogle Scholar
Weiss, N.O. & Proctor, M.R.E. 2014 Magnetoconvection. Cambridge University Press.CrossRefGoogle Scholar
Xu, A., Shi, L. & Xi, H.-D. 2019 Statistics of temperature and thermal energy dissipation rate in low-Prandtl number turbulent thermal convection. Phys. Fluids 31 (12), 125101.CrossRefGoogle Scholar
Xu, G.-C., Wang, Q., Wan, Z. & Sun, D.-J. 2021 Heat transfer and plume statistics in turbulent thermal convection with sparse fractal roughness. J. Hydrodyn. 33 (5), 10651077.CrossRefGoogle Scholar
Xu, F., Zhang, L. & Xia, K.-Q. 2024 Experimental measurement of spatio-temporally resolved energy dissipation rate in turbulent Rayleigh–Bénard convection. J. Fluid Mech. 984, A8.CrossRefGoogle Scholar
Yan, M., Calkins, M., Maffei, S., Julien, K., Tobias, S. & Marti, P. 2019 Heat transfer and flow regimes in quasi-static magnetoconvection with a vertical magnetic field. J. Fluid Mech. 877, 11861206.CrossRefGoogle Scholar
Yanagisawa, T., Hamano, Y., Miyagoshi, T., Yamagishi, Y., Tasaka, Y. & Takeda, Y. 2013 Convection patterns in a liquid metal under an imposed horizontal magnetic field. Phys. Rev. E: Stat. Nonlinear Soft Matt. Phys. 88 (6), 063020.CrossRefGoogle Scholar
Yang, Y. & Lohse, D. 2017 Two-scalar turbulent Rayleigh–Bénard convection: numerical simulations and unifying theory. J. Fluid Mech. 848, 648659.CrossRefGoogle Scholar
Yu, H., Li, N. & Ecke, R. 2007 Scaling in laminar natural convection in laterally heated cavities: is turbulence essential in the classical scaling of heat transfer? Phys. Rev. E: Stat. Nonlinear Soft Matt. Phys. 76 (2), 026303.CrossRefGoogle ScholarPubMed
Zhang, L., Ding, G.-Y. & Xia, K.-Q. 2021 On the effective horizontal buoyancy in turbulent thermal convection generated by cell tilting. J. Fluid Mech. 914, A15.CrossRefGoogle Scholar
Zhang, L., Dong, J. & Xia, K.-Q. 2022 Exploring the plume and shear effects in turbulent Rayleigh–Bénard convection with effective horizontal buoyancy under streamwise and spanwise geometrical confinements. J. Fluid Mech. 940, A37.CrossRefGoogle Scholar
Zhang, Y. & Zhou, Q. 2024 Low-Prandtl-number effects on global and local statistics in two-dimensional Rayleigh–Bénard convection. Phys. Fluids 36 (1), 015107.CrossRefGoogle Scholar
Zhang, Y., Zhou, Q. & Sun, C. 2017 Statistics of kinetic and thermal energy dissipation rates in two-dimensional turbulent Rayleigh–Bénard convection. J. Fluid Mech. 814, 165184.CrossRefGoogle Scholar
Zhu, H.-T., Chen, L. & Ni, M.-J. 2024 Effects of wall conductivities on magnetoconvection in a cube. Phys. Rev. Fluids 9 (4), 043701.CrossRefGoogle Scholar
Zwirner, L., Emran, M.S., Schindler, F., Singh, S., Eckert, S., Vogt, T. & Shishkina, O. 2022 Dynamics and length scales in vertical convection of liquid metals. J. Fluid Mech. 932, A9.CrossRefGoogle Scholar
Zwirner, L., Khalilov, R., Kolesnichenko, I., Mamykin, A., Mandrykin, S., Pavlinov, A., Shestakov, A., Teimurazov, A., Frick, P. & Shishkina, O. 2020 The influence of the cell inclination on the heat transport and large-scale circulation in liquid metal convection. J. Fluid Mech. 884, A18.CrossRefGoogle Scholar
Zürner, T. 2020 Refined mean field model of heat and momentum transfer in magnetoconvection. Phys. Fluids 32 (10), 107101.CrossRefGoogle Scholar
Zürner, T., Liu, W., Krasnov, D. & Schumacher, J. 2016 Heat and momentum transfer for magnetoconvection in a vertical external magnetic field. Phys. Rev. E 94 (4), 043108.CrossRefGoogle Scholar