Hostname: page-component-78c5997874-4rdpn Total loading time: 0 Render date: 2024-11-19T05:04:12.175Z Has data issue: false hasContentIssue false

Experiments on transition to turbulence in oscillatory pipe flow

Published online by Cambridge University Press:  26 April 2006

David M. Eckmann
Affiliation:
Biomedical Engineering Department, The Technological Institute, Northwestern University, Evanston, IL 60208, USA and Department of Anesthesia, Northwestern University Medical School, Chicago, IL 60611, USA
James B. Grotberg
Affiliation:
Biomedical Engineering Department, The Technological Institute, Northwestern University, Evanston, IL 60208, USA and Department of Anesthesia, Northwestern University Medical School, Chicago, IL 60611, USA

Abstract

A laser-Doppler velocimeter is used to analyse volume-cycled oscillatory flow of a Newtonian viscous fluid in a straight circular tube. The axial velocity is measured at radial positions across the diameter of the tube for a wide range of amplitude A = stroke distance/tube radius (2.4 [les ] A [les ] 21.6) and Womersley parameter (9 < α < 33). Transition to turbulence is detected during the decelerating phase of fluid motion for 500 < Rδ < 854, where Rδ = αA √2 is the Reynolds number based on Stokes-layer thickness. The turbulence is confined to an annular region which is a few times the Stokes-layer thickness near the wall. Hot-film anemometer measurements indicate the core flow remains stable when the boundary layer becomes turbulent for Rδ up to 1310.

Type
Research Article
Copyright
© 1991 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Collins, J. I.: 1963 Inception of turbulence at the bed under periodic gravity waves. J. Geophys. Res. 18, 60076014.Google Scholar
Cooper, E. R., Jankowski, D. F., Neitzel, G. P. & Squire, T. H., 1985 Experiments on the onset of instability in unsteady circular Couette flow. J. Fluid Mech. 161, 97113.Google Scholar
Davis, S. H. & von Kerczek, C. 1973 A reformulation of energy stability theory. Arch. Rat. Mech. Anal. 52, 112117.Google Scholar
Eckmann, D. M. & Grotberg, J. B., 1988 Oscillatory flow and mass transport in a curved tube. J. Fluid Mech. 188, 509527.Google Scholar
Elger, D. F. & Adams, R. L., 1987 Dynamic hot wire calibration in an oscillating flow. Bull. Am. Phys. Soc. 32, 2106.Google Scholar
Fredbekg, J. J.: 1980 Augmented diffusion in the airways can support pulmonary gas exchange. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 49, 232238.Google Scholar
Gerrard, J. H. & Hughes, M. D., 1971 The flow due to an oscillating piston in a cylindrical tube: a comparison between experiment and a simple entrance flow theory. J. Fluid Mech. 50, 97106.Google Scholar
Godleski, D. A. & Grotberg, J. B., 1988 Convection-diffusion interaction for oscillatory flow in a tapered tube. Tram. ASME K: J. Biomech. Engng 110, 283291.Google Scholar
Hayashi, T. & Ohashi, M., 1982 A dynamical and visual study on the oscillatory turbulent boundary layer. In Turbulent Shear Flows 3 (ed. L. J. S. Bradbury, F. Durst, B. Launder et al.), pp. 1833. Springer.
Hino, M., Kashiwayanagi, M., Nakayama, A. & Hara, T., 1983 Experiments on the turbulence statistics and the structure of a reciprocating oscillatory flow. J. Fluid Mech. 131, 363400.Google Scholar
Hino, M., Sawamoto, M. & Takasu, S., 1976 Experiments on transition to turbulence in an oscillatory pipe flow. J. Fluid Mech. 75, 193207.Google Scholar
Joshi, C. H., Kamm, R. D., Drazen, J. M. & Slutsky, A. S., 1983 An experimental study of gas exchange in laminar oscillatory flow. J. Fluid Mech. 133, 245254.Google Scholar
von Kerczek, C. & Davis, S. H. 1972 The stability of oscillatory Stokes layers. Stud. Appl. Math. 51, 239252.Google Scholar
von Kerczek, C. & Davis, S. H. 1974 Linear stability theory of oscillatory Stokes layers. J. Fluid Mech. 62, 753773.Google Scholar
Kurzweg, U. H.: 1985 Enhance heat condition in fluids subjected to sinusoidal oscillations. J. Heat Transfer 107, 459462.Google Scholar
Li, H.: 1954 Stability of oscillatory laminar flow along a wall. Beach Erosion Bd., US Army Corps of Engineers Tech. Memo. 47.Google Scholar
Merkli, P. & Thomann, H., 1975 Transition to turbulence in oscillating pipe flow. J. Fluid Mech. 68, 567575.Google Scholar
Ohmi, M., Iguchi, M., Kakehashi, K. & Masuda, T., 1982 Transition to turbulence and velocity distribution in an oscillating pipe flow. Bull. JSME. 25, 365371.Google Scholar
Prandtl, L.: 1921 Bemerkungen euber die Entstehung der Turbulenz. Z. angew. Math. Mech. 1, 431436.Google Scholar
Rayleigh, Lord: 1887 On the stability, or instability, of certain fluid motions. 2. Scientific Papers, vol. 3, pp. 223. Cambridge University Press.
Sergeev, S. I.: 1966 Fluid oscillations in pipes at moderate Reynolds numbers. Trans. Sov. Fluid Dyn. 1, 121122.Google Scholar
Slutsky, A. S., Drazen, J. M., Ingram, R. H., Kamm, R. D., Shapibo, A. H., Fredberg, J. J., Loring, S. H. & Lehr, J., 1980 Effective pulmonary ventilation with small-volume oscillations at high frequency. Science 209, 709611.Google Scholar
Smith, R.: 1982 Contaminant dispersion in oscillatory flows. J. Fluid Mech. 114, 379398.Google Scholar
Stimer, B. M., Jensen, B. L. & Fredsoe, J., 1987 Turbulence in oscillatory boundary layers. Advances in Turbulence.Google Scholar
Taylor, G. I.: 1915 Eddy motion in the atmosphere. Phil. Trans. R. Soc. Lond. A A215, 126.Google Scholar
Watson, E. J.: 1983 Diffusion in oscillatory pipe flow. J. Fluid Mech. 133, 233244.Google Scholar
Yang, W. H. & Yih, C.-S. 1977 Stability of time-periodic flows in a circular pipe. J. Fluid Mech. 82, 497505.Google Scholar