Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-10T05:30:31.779Z Has data issue: false hasContentIssue false

Experiments on transient growth of turbulent spots

Published online by Cambridge University Press:  26 September 2017

L. Klotz*
Affiliation:
Physique et Mécanique des Milieux Hétérogènes (PMMH), CNRS, ESPCI, PSL Research University, 10 rue Vauquelin, 75005 Paris, France Paris-Sorbonne Université, 1 rue Victor-Cousin, 75005 Paris, France Université Paris-Diderot, 5 rue Thomas-Mann, 75013 Paris, France
J. E. Wesfreid*
Affiliation:
Physique et Mécanique des Milieux Hétérogènes (PMMH), CNRS, ESPCI, PSL Research University, 10 rue Vauquelin, 75005 Paris, France Paris-Sorbonne Université, 1 rue Victor-Cousin, 75005 Paris, France Université Paris-Diderot, 5 rue Thomas-Mann, 75013 Paris, France
*
Email addresses for correspondence: [email protected], [email protected]
Email addresses for correspondence: [email protected], [email protected]

Abstract

We present detailed experiments on transient growth of turbulent spots induced by external forcing in plane Couette–Poiseuille flow, which are studied in the framework of linear transient growth. The experimental investigation is supplemented with full theoretical analysis. We compare quantitatively the experimental and theoretical results, including maximal gain and the time at which it occurs. We also present the limits of validity for the application of the linear theory at high amplitude perturbation and Reynolds number, showing experiments with self-sustained states.

Type
Rapids
Copyright
© 2017 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aider, J. L. & Wesfreid, J. E. 1996 Characterization of longitudinal Görtler vortices in a curved channel using ultrasonic Doppler velocimetry and visualizations. J. Phys. III France 6 (7), 893906.Google Scholar
Andersson, P., Berggren, M. & Henningson, D. S. 1999 Optimal disturbances and bypass transition in boundary layers. Phys. Fluids 11 (1), 134150.CrossRefGoogle Scholar
Balakumar, P. 1997 Finite-amplitude equilibrium solutions for plane Poiseuille–Couette flow. Theor. Comput. Fluid Dyn. 9 (2), 103119.CrossRefGoogle Scholar
Bergström, L. B. 1995 Transient properties of a developing laminar disturbance in pipe Poiseuille flow. Eur. J. Mech. (B/Fluids) 14 (5), 601615.Google Scholar
Bergström, L. B. 2005 Nonmodal growth of three-dimensional disturbances on plane Couette–Poiseuille flows. Phys. Fluids 17 (1), 014105.CrossRefGoogle Scholar
Bottin, S., Dauchot, O., Daviaud, F. & Manneville, P. 1998 Experimental evidence of streamwise vortices as finite amplitude solutions in transitional plane Couette flow. Phys. Fluids 10 (10), 25972607.Google Scholar
Brand, E. & Gibson, J. F. 2014 A doubly localized equilibrium solution of plane Couette flow. J. Fluid Mech. 750, R3.Google Scholar
Cherubini, S., De Palma, P., Robinet, J.-Ch. & Bottaro, A. 2010a Rapid path to transition via nonlinear localized optimal perturbations in a boundary-layer flow. Phys. Rev. E 82 (6), 066302.Google Scholar
Cherubini, S., Robinet, J.-C., Bottaro, A. & Palma, P. D. 2010b Optimal wave packets in a boundary layer and initial phases of a turbulent spot. J. Fluid Mech. 656, 231259.CrossRefGoogle Scholar
Darbyshire, A. G. & Mullin, T. 1995 Transition to turbulence in constant-mass-flux pipe flow. J. Fluid Mech. 289, 83114.Google Scholar
Daviaud, F., Hegseth, J. & Bergé, P. 1992 Subcritical transition to turbulence in plane Couette flow. Phys. Rev. Lett. 69 (17), 25112514.CrossRefGoogle ScholarPubMed
Denissen, N. A. & White, E. B. 2013 Secondary instability of roughness-induced transient growth. Phys. Fluids 25 (11), 114108.CrossRefGoogle Scholar
Duguet, Y., Monokrousos, A., Brandt, L. & Henningson, D. S. 2013 Minimal transition thresholds in plane Couette flow. Phys. Fluids 25 (8), 084103.CrossRefGoogle Scholar
Duriez, T., Aider, J. L. & Wesfreid, J. E. 2009 Self-sustaining process through streak generation in a flat-plate boundary layer. Phys. Rev. Lett. 103 (14), 144502.CrossRefGoogle Scholar
Elofsson, P. A., Kawakami, M. & Alfredsson, P. H. 1999 Experiments on the stability of streamwise streaks in plane Poiseuille flow. Phys. Fluids 11 (4), 915930.CrossRefGoogle Scholar
Farano, M., Cherubini, S., Robinet, J.-C. & Palma, P. D. 2016 Subcritical transition scenarios via linear and nonlinear localized optimal perturbations in plane Poiseuille flow. Fluid Dyn. Res. 48 (6), 061409.CrossRefGoogle Scholar
Henningson, D. S., Lundbladh, A. & Johansson, A. V. 1993 A mechanism for bypass transition from localized disturbances in wall-bounded shear flows. J. Fluid Mech. 250, 169207.Google Scholar
Hoepffner, J.2006 Stability and control of shear flows subject to stochastic excitations. Doctoral dissertation, KTH Mechanics, Stockholm, Sweden, code downloaded from http://www.lmm.jussieu.fr/∼hoepffner/codes.php.Google Scholar
Joseph, D. D. 1976 Stability of Fluid Motions I. Springer.Google Scholar
Kerswell, R. R., Pringle, C. C. T. & Willis, A. P. 2014 An optimization approach for analysing nonlinear stability with transition to turbulence in fluids as an exemplar. Rep. Prog. Phys. 77 (8), 085901.Google Scholar
Kim, L. & Moehlis, J. 2006 Transient growth for streak-streamwise vortex interactions. Phys. Lett. A 358 (5–6), 431437.Google Scholar
Klingmann, B. G. B. 1992 On transition due to three-dimensional disturbances in plane Poiseuille flow. J. Fluid Mech. 240, 167195.CrossRefGoogle Scholar
Klingmann, B. G. B. & Alfredsson, P. H. 1991 Experiments on the evolution of a point-like disturbance in plane Poiseuille flow into a turbulent spot. In Advances in Turbulence 3, pp. 182188. Springer.CrossRefGoogle Scholar
Klotz, L., Lemoult, G., Frontczak, I., Tuckerman, L. S. & Wesfreid, J. E. 2017 Couette–Poiseuille flow experiment with zero mean advection velocity: subcritical transition to turbulence. Phys. Rev. Fluids 2 (4), 043904.Google Scholar
Lemoult, G., Aider, J. L. & Wesfreid, J. E. 2013 Turbulent spots in a channel: large-scale flow and self-sustainability. J. Fluid Mech. 731, R1.Google Scholar
Marais, C., Godoy-Diana, R., Barkley, D. & Wesfreid, J. E. 2011 Convective instability in inhomogeneous media: Impulse response in the subcritical cylinder wake. Phys. Fluids 23 (1), 014104.CrossRefGoogle Scholar
Matsubara, M. & Alfredsson, P. H. 2001 Disturbance growth in boundary layers subjected to free-stream turbulence. J. Fluid Mech. 430, 149168.Google Scholar
Petitjeans, P. & Wesfreid, J. E. 1996 Spatial evolution of Görtler instability in a curved duct of high curvature. AIAA Paper 34 (9), 17931800.Google Scholar
Philip, J., Svizher, A. & Cohen, J. 2007 Scaling law for a subcritical transition in plane Poiseuille flow. Phys. Rev. Lett. 98 (15), 154502.Google Scholar
Pringle, C. C. T. & Kerswell, R. R. 2010 Using nonlinear transient growth to construct the minimal seed for shear flow turbulence. Phys. Rev. Lett. 105 (15), 154502.CrossRefGoogle ScholarPubMed
Pringle, C. C. T., Willis, A. P. & Kerswell, R. R. 2015 Fully localised nonlinear energy growth optimals in pipe flow. Phys. Fluids 27 (6), 064102.CrossRefGoogle Scholar
Reshotko, E. 2001 Transient growth: a factor in bypass transition. Phys. Fluids 13 (5), 10671075.CrossRefGoogle Scholar
Schmid, P. J. & Henningson, D. S. 2001 Stability and Transition in Shear Flows. Springer.Google Scholar
Tillmark, N. & Alfredsson, P. H. 1991 An experimental study of transition in plane Couette flow. In Advances in Turbulence 3, pp. 235242. Springer.Google Scholar
Tsanis, I. K. & Leutheusser, H. J. 1988 The structure of turbulent shear-induced countercurrent flow. J. Fluid Mech. 189, 531552.Google Scholar
Westin, K. J. A., Bakchinov, A. A., Kozlov, V. V. & Alfredsson, P. H. 1998 Experiments on localized disturbances in a flat plate boundary layer. Part 1. The receptivity and evolution of a localized free stream disturbance. Eur. J. Mech. (B/Fluids) 17 (6), 823846.Google Scholar
Westin, K. J. A., Boiko, A. V., Klingmann, B. G. B., Kozlov, V. V. & Alfredsson, P. H. 1994 Experiments in a boundary layer subjected to free stream turbulence. Part 1. Boundary layer structure and receptivity. J. Fluid Mech. 281, 193218.CrossRefGoogle Scholar
White, E. B. 2002 Transient growth of stationary disturbances in a flat plate boundary layer. Phys. Fluids 14 (12), 44294439.Google Scholar