Hostname: page-component-78c5997874-v9fdk Total loading time: 0 Render date: 2024-11-05T15:48:39.966Z Has data issue: false hasContentIssue false

Experimental non-Boussinesq fountains

Published online by Cambridge University Press:  09 November 2015

Rabah Mehaddi*
Affiliation:
Aix-Marseille Université, Laboratoire IUSTI, UMR CNRS 7343, 5 rue Enrico Fermi, 13 453 Marseille, CEDEX 13, France
Olivier Vauquelin
Affiliation:
Aix-Marseille Université, Laboratoire IUSTI, UMR CNRS 7343, 5 rue Enrico Fermi, 13 453 Marseille, CEDEX 13, France
Fabien Candelier
Affiliation:
Aix-Marseille Université, Laboratoire IUSTI, UMR CNRS 7343, 5 rue Enrico Fermi, 13 453 Marseille, CEDEX 13, France
*
Email address for correspondence: [email protected]

Abstract

Laboratory experiments involving downward air–helium fountains are presented. The large density differences between these releases and the ambient allow us to investigate how non-Boussinesq effects modify fountain heights and fountain fluctuations in comparison with the Boussinesq case (i.e. marginal density differences). In these experiments, the source Froude number is varied over a wide range covering (i) the very weak, (ii) the weak and (iii) the forced fountain regimes. It is shown that the classical Boussinesq correlations can be extended to the non-Boussinesq case provided that the Froude number is multiplied by the square root of the ratio between the released fluid density and that of the ambient. In the range investigated, no influence of the source Reynolds number is observed.

Type
Rapids
Copyright
© 2015 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ahmad, N. & Baddour, R. E. 2015 Density effects on dilution and height of vertical fountains. J. Hydraul. Engng 141 (11), 04015024.Google Scholar
Baddour, R. E. & Zhang, H. 2009 Density effect on round turbulent hypersaline fountain. J. Hydraul. Engng 135, 5759.CrossRefGoogle Scholar
Burridge, H. C. & Hunt, G. R. 2012 The rise heights of low- and high-Froude-number turbulent axisymmetric fountains. J. Fluid Mech. 691, 392416.CrossRefGoogle Scholar
Burridge, H. C. & Hunt, G. R. 2013 The rhythm of fountains: the length and time scales of rise height fluctuations at low and high Froude numbers. J. Fluid Mech. 728, 91119.CrossRefGoogle Scholar
Campbell, I. H. & Turner, J. S. 1985 Turbulent mixing between fluids with different viscosities. Nature 313 (5997), 3942.CrossRefGoogle Scholar
Clanet, C. 1998 On large-amplitude pulsating fountains. J. Fluid Mech. 366, 333350.CrossRefGoogle Scholar
Crapper, P. F. & Baines, W. D. 1978 Some remarks on non-Boussinesq forced plumes. Atmos. Environ. 12, 19391941.CrossRefGoogle Scholar
Kaye, N. B. & Hunt, G. R. 2006 Weak fountains. J. Fluid Mech. 558, 319328.CrossRefGoogle Scholar
Morton, B. R. 1959 Forced plumes. J. Fluid Mech. 5, 151163.CrossRefGoogle Scholar
Philippe, P., Raufaste, C., Kurowski, P. & Petitjeans, P. 2005 Penetration of a negatively buoyant jet in a miscible liquid. Phys. Fluids 17, 053601.CrossRefGoogle Scholar
Ricou, F. P. & Spalding, D. B. 1961 Measurements of entrainment by axisymmetrical turbulent jets. J. Fluid Mech. 11, 2132.CrossRefGoogle Scholar
Rooney, G. G. & Linden, P. F. 1996 Similarity considerations for non-Boussinesq plumes in an unstratified environment. J. Fluid Mech. 318, 237250.CrossRefGoogle Scholar
Turner, J. S. 1966 Jets and plumes with negative or reversing buoyancy. J. Fluid Mech. 26, 779792.CrossRefGoogle Scholar
Vinoth, B. R. & Panigrahi, P. K. 2014 Characteristics of low Reynolds number non-Boussinesq fountains from non-circular sources. Phys. Fluids 26, 014106.CrossRefGoogle Scholar
Williamson, N., Srinarayana, N., Armfield, S. W., McBain, G. D. & Lin, W. 2008 Low-Reynolds-number fountain behaviour. J. Fluid Mech. 608, 297318.CrossRefGoogle Scholar