Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2025-01-04T03:56:18.489Z Has data issue: false hasContentIssue false

Experimental evidence of amplitude modulation in permeable-wall turbulence

Published online by Cambridge University Press:  17 January 2020

Taehoon Kim
Affiliation:
Department of Mechanical Science and Engineering, University of Illinois, Urbana, IL61801, USA Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, IN46556, USA
Gianluca Blois
Affiliation:
Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, IN46556, USA
James L. Best
Affiliation:
Department of Mechanical Science and Engineering, University of Illinois, Urbana, IL61801, USA Departments of Geology, Geography and GIS and Ven Te Chow Hydrosystems Laboratory, University of Illinois, Urbana, IL61801, USA
Kenneth T. Christensen*
Affiliation:
Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, IN46556, USA Department of Civil and Environmental Engineering and Earth Sciences, University of Notre Dame, Notre Dame, IN46556, USA CO2 Storage Division, International Institute for Carbon-Neutral Energy Research (I2CNER), Kyushu University, Japan
*
Email address for correspondence: [email protected]

Abstract

The dynamic interplay between surface and subsurface flow in the presence of a permeable boundary was investigated using low and high frame-rate particle-image velocimetry measurements in a refractive-index-matching flow environment. Two idealized permeable wall models were considered. Both models contained five layers of cubically packed spheres, but one exhibited a smooth interface with the flow, while the other embodied a hemispherical surface topography. The relationship between the large-scale turbulent motions overlying the permeable walls and the small-scale turbulence just above, and within, the walls was explored using instantaneous and statistical analyses. Although previous studies have indirectly identified the potential existence of amplitude modulation in permeable-wall turbulence (a phenomenon identified in impermeable-wall turbulence whereby the outer large scales modulate the intensity of the near-wall, small-scale turbulence), the present effort provides direct evidence of its existence in flow over both permeable walls considered. The spatio-temporal signatures of amplitude modulation were also characterized using conditional averaging based on zero-crossing events. This analysis highlights the connection between large-scale regions of high/low streamwise momentum in the surface flow, downwelling/upwelling across the permeable interface and enhancement/suppression of small-scale turbulence, respectively, just above and within the permeable walls. The presence of bed roughness is found to intensify the strength and penetration of flow into the permeable bed modulated by large-scale structures in the surface flow, and linked to possible roughness-formed channelling effects and shedding of smaller-scale flow structures from the roughness elements.

Type
JFM Papers
Copyright
© The Author(s), 2020. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adrian, R. J., Christensen, K. T. & Liu, Z.-C. 2000a Analysis and interpretation of instantaneous turbulent velocity fields. Exp. Fluids 29, 275290.CrossRefGoogle Scholar
Adrian, R. J., Meinhart, C. D. & Tomkins, C. D. 2000b Vortex organization in the outer region of the turbulent boundary layer. J. Fluid Mech. 422, 154.CrossRefGoogle Scholar
Adrian, R. J. & Westerweel, J. 2011 Particle Image Velocimetry. Cambridge University Press.Google Scholar
Anderson, W. 2016 Amplitude modulation of streamwise velocity fluctuations in the roughness sublayer: evidence from large-eddy simulations. J. Fluid Mech. 789, 567588.CrossRefGoogle Scholar
Antonia, R. A. & Luxton, R. E. 1971 The response of a turbulent boundary layer to a step change in surface roughness. Part 1. Smooth to rough. J. Fluid Mech. 48 (4), 721761.CrossRefGoogle Scholar
Baars, W. J., Talluru, K. M., Hutchins, N. & Marusic, I. 2015 Wavelet analysis of wall turbulence to study large-scale modulation of small scales. Exp. Fluids 56 (10), 188.CrossRefGoogle Scholar
Bandyopadhyay, P. R. & Hussain, A. K. M. F. 1984 The coupling between scales in shear flows. Phys. Fluids 27 (9), 22212228.CrossRefGoogle Scholar
Berkooz, G., Holmes, P. & Lumley, J. L. 1993 The proper orthogonal decomposition in the analysis of turbulent flows. Annu. Rev. Fluid Mech. 25 (1), 539575.CrossRefGoogle Scholar
Bernardini, M. & Pirozzoli, S. 2011 Inner/outer layer interactions in turbulent boundary layers: a refined measure for the large-scale amplitude modulation mechanism. Phys. Fluids 23 (6), 061701.CrossRefGoogle Scholar
Best, J. 2005 The fluid dynamics of river dunes: a review and some future research directions. J. Geophys. Res.-Earth Surf. 110, F04S02.Google Scholar
Blackman, K. & Perret, L. 2016 Non-linear interactions in a boundary layer developing over an array of cubes using stochastic estimation. Phys. Fluids 28 (9), 095108.CrossRefGoogle Scholar
Blois, G., Christensen, K. T., Best, J. L., Elliott, G., Austin, J., Dutton, J. C., Bragg, M., Garcia, M. & Fouke, B.2012a A versatile refractive-index-matched flow facility for studies of complex flow systems across scientific disciplines. AIAA Paper 2012-736.CrossRefGoogle Scholar
Blois, G., Smith, G. S., Best, J. L., Hardy, R. J. & Lead, J. R. 2012b Quantifying the dynamics of flow within a permeable bed using time-resolved endoscopic particle imaging velocimetry (EPIV). Exp. Fluids 53 (1), 5176.CrossRefGoogle Scholar
Bomminayuni, S. & Stoesser, T. 2011 Turbulence statistics in an open-channel flow over a rough bed. J. Hydraul. Engng 137 (11), 13471358.CrossRefGoogle Scholar
Breugem, W. P., Boersma, B. J. & Uittenbogaard, R. E. 2006 The influence of wall permeability on turbulent channel flow. J. Fluid Mech. 562, 3572.CrossRefGoogle Scholar
Budwig, R. 1994 Refractive index matching methods for liquid flow investigations. Exp. Fluids 17 (5), 350355.CrossRefGoogle Scholar
Chan, L., MacDonald, M., Chung, D., Hutchins, N. & Ooi, A. 2015 A systematic investigation of roughness height and wavelength in turbulent pipe flow in the transitionally rough regime. J. Fluid Mech. 771, 743777.CrossRefGoogle Scholar
Cheng, H. & Castro, I. P. 2002 Near wall flow over urban-like roughness. Boundary-Layer Meteorol. 104 (2), 229259.CrossRefGoogle Scholar
Christensen, K. T. 2004 The influence of peak-locking errors on turbulence statistics computed from PIV ensembles. Exp. Fluids 36 (3), 484497.CrossRefGoogle Scholar
Christensen, K. T. & Adrian, R. J. 2001 Statistical evidence of hairpin vortex packets in wall turbulence. J. Fluid Mech. 431, 433443.CrossRefGoogle Scholar
Chung, D. & McKeon, B. J. 2010 Large-eddy simulation of large-scale structures in long channel flow. J. Fluid Mech. 661, 341364.CrossRefGoogle Scholar
Dixit, S. A. & Ramesh, O. N. 2009 Determination of skin friction in strong pressure-gradient equilibrium and near-equilibrium turbulent boundary layers. Exp. Fluids 47 (6), 10451058.CrossRefGoogle Scholar
Dogan, E., Örlü, R., Gatti, D., Vinuesa, R. & Schlatter, P. 2019 Quantification of amplitude modulation in wall-bounded turbulence. Fluid Dyn. Res. 51, 011408.CrossRefGoogle Scholar
Efstathiou, C. & Luhar, M. 2018 Mean turbulence statistics in boundary layers over high-porosity foams. J. Fluid Mech. 841, 351379.CrossRefGoogle Scholar
Eitel-Amor, G., Örlü, R. & Schlatter, P. 2014 Simulation and validation of a spatially evolving turbulent boundary layer up to Re𝜃 = 8300. Intl J. Heat Fluid Flow 47, 5769.CrossRefGoogle Scholar
Fang, H., Han, X., He, G. & Dey, S. 2018 Influence of permeable beds on hydraulically macro-rough flow. J. Fluid Mech. 847, 552590.CrossRefGoogle Scholar
Flack, K. A., Schultz, M. P. & Connelly, J. S. 2007 Examination of a critical roughness height for outer layer similarity. Phys. Fluids 19 (9), 095104.CrossRefGoogle Scholar
Ganapathisubramani, B., Longmire, E. K. & Marusic, I. 2003 Characteristics of vortex packets in turbulent boundary layers. J. Fluid Mech. 478, 3546.CrossRefGoogle Scholar
Hassan, Y. A. & Dominguez-Ontiveros, E. E. 2008 Flow visualization in a pebble bed reactor experiment using PIV and refractive index matching techniques. Nucl. Engng Des. 238 (11), 30803085.CrossRefGoogle Scholar
Horton, N. A. & Pokrajac, D. 2009 Onset of turbulence in a regular porous medium: an experimental study. Phys. Fluids 21 (4), 045104.CrossRefGoogle Scholar
Huser, A. & Biringen, S. 1993 Direct numerical simulation of turbulent flow in a square duct. J. Fluid Mech. 257, 6595.CrossRefGoogle Scholar
Hutchins, N. & Marusic, I. 2007a Evidence of very long meandering features in the logarithmic region of turbulent boundary layers. J. Fluid Mech. 579, 128.CrossRefGoogle Scholar
Hutchins, N. & Marusic, I. 2007b Large-scale influences in near-wall turbulence. Phil. Trans. R. Soc. Lond. A 365 (1852), 647664.CrossRefGoogle Scholar
Hutchins, N., Monty, J. P., Ganapathisubramani, B., Ng, H. C. H. & Marusic, I. 2011 Three-dimensional conditional structure of a high-Reynolds-number turbulent boundary layer. J. Fluid Mech. 673, 255285.CrossRefGoogle Scholar
Jiménez, J. 2004 Turbulent flows over rough walls. Annu. Rev. Fluid Mech. 36, 173196.CrossRefGoogle Scholar
Khakpour, M. & Vafai, K. 2008 Analysis of transport phenomena within PEM fuel cells – an analytical solution. Intl J. Heat Mass Transfer 51 (15), 37123723.CrossRefGoogle Scholar
Kim, T., Blois, G., Best, J. L. & Christensen, K. T. 2018 Experimental study of turbulent flow over and within cubically packed walls of spheres: effects of topography, permeability and wall thickness. Intl J. Heat Fluid Flow 73, 1629.CrossRefGoogle Scholar
Kim, T., Blois, G., Best, J. L. & Christensen, K. T. 2019 PIV measurements of turbulent flow overlying large, cubic-and hexagonally-packed hemisphere arrays. J. Hydraul Res. doi:10.1080/00221686.2019.1581671.CrossRefGoogle Scholar
Kuwata, Y. & Suga, K. 2016 Lattice Boltzmann direct numerical simulation of interface turbulence over porous and rough walls. Intl J. Heat Fluid Flow 61, 145157.CrossRefGoogle Scholar
Lu, S. S. & Willmarth, W. W. 1973 Measurements of the structure of the Reynolds stress in a turbulent boundary layer. J. Fluid Mech. 60 (3), 481511.CrossRefGoogle Scholar
Manes, C., Pokrajac, D. & McEwan, I. 2007 Double-averaged open-channel flows with small relative submergence. J. Hydraul. Engng 133 (8), 896904.CrossRefGoogle Scholar
Manes, C., Pokrajac, D., McEwan, I. & Nikora, V. 2009 Turbulence structure of open channel flows over permeable and impermeable beds: a comparative study. Phys. Fluids 21 (12), 125109.CrossRefGoogle Scholar
Mathis, R., Hutchins, N. & Marusic, I. 2009 Large-scale amplitude modulation of the small-scale structures in turbulent boundary layers. J. Fluid Mech. 628, 311337.CrossRefGoogle Scholar
Mathis, R., Hutchins, N. & Marusic, I. 2011a A predictive inner–outer model for streamwise turbulence statistics in wall-bounded flows. J. Fluid Mech. 681, 537566.CrossRefGoogle Scholar
Mathis, R., Marusic, I., Hutchins, N. & Sreenivasan, K. R. 2011b The relationship between the velocity skewness and the amplitude modulation of the small scale by the large scale in turbulent boundary layers. Phys. Fluids 23 (12), 121702.CrossRefGoogle Scholar
Metzger, M. M. & Klewicki, J. C. 2001 A comparative study of near-wall turbulence in high and low Reynolds number boundary layers. Phys. Fluids 13 (3), 692701.CrossRefGoogle Scholar
Mignot, E., Barthélemy, E. & Hurther, D. 2009 Double-averaging analysis and local flow characterization of near-bed turbulence in gravel-bed channel flows. J. Fluid Mech. 618, 279303.CrossRefGoogle Scholar
Motlagh, S. Y. & Taghizadeh, S. 2016 POD analysis of low Reynolds turbulent porous channel flow. Intl J. Heat Fluid Flow 61, 665676.CrossRefGoogle Scholar
Narrow, T. L., Yoda, M. & Abdel-Khalik, S. I. 2000 A simple model for the refractive index of sodium iodide aqueous solutions. Exp. Fluids 28 (3), 282283.CrossRefGoogle Scholar
Natrajan, V. K. & Christensen, K. T. 2006 The role of coherent structures in subgrid-scale energy transfer within the log layer of wall turbulence. Phys. Fluids 18 (6), 065104.CrossRefGoogle Scholar
Nepf, H. M. 2012 Flow and transport in regions with aquatic vegetation. Annu. Rev. Fluid Mech. 44, 123142.CrossRefGoogle Scholar
Nikora, V., Goring, D., McEwan, I. & Griffiths, G. 2001 Spatially averaged open-channel flow over rough bed. J. Hydraul. Engng 127 (2), 123133.CrossRefGoogle Scholar
Nikora, V., McEwan, I., McLean, S., Coleman, S., Pokrajac, D. & Walters, R. 2007 Double-averaging concept for rough-bed open-channel and overland flows: theoretical background. J. Hydraul. Engng 133 (8), 873883.CrossRefGoogle Scholar
Pathikonda, G. & Christensen, K. T. 2017 Inner–outer interactions in a turbulent boundary layer overlying complex roughness. Phys. Rev. Fluids 2 (4), 044603.CrossRefGoogle Scholar
Pathikonda, G. & Christensen, K. T. 2019 Investigation of inner-outer interactions in a turbulent boundary layer using high-speed particle image velocimetry. Phys. Rev. Fluids 4 (3), 034607.CrossRefGoogle Scholar
Perry, A. E. & Li, J. D. 1990 Experimental support for the attached-eddy hypothesis in zero-pressure-gradient turbulent boundary layers. J. Fluid Mech. 218, 405438.CrossRefGoogle Scholar
Pinelli, A., Uhlmann, M., Sekimoto, A. & Kawahara, G. 2010 Reynolds number dependence of mean flow structure in square duct turbulence. J. Fluid Mech. 644, 107122.CrossRefGoogle Scholar
Poggi, D., Porporato, A., Ridolfi, L., Albertson, J. D. & Katul, G. G. 2004 The effect of vegetation density on canopy sub-layer turbulence. Boundary-Layer Meteorol. 111 (3), 565587.CrossRefGoogle Scholar
Pokrajac, D. & Manes, C. 2009 Velocity measurements of a free-surface turbulent flow penetrating a porous medium composed of uniform-size spheres. Trans. Porous Med. 78 (3), 367383.CrossRefGoogle Scholar
Prasad, A. K., Adrian, R. J., Landreth, C. C. & Offutt, P. W. 1992 Effect of resolution on the speed and accuracy of particle image velocimetry interrogation. Exp. Fluids 13 (2-3), 105116.CrossRefGoogle Scholar
Raupach, M. R. 1981 Conditional statistics of Reynolds stress in rough-wall and smooth-wall turbulent boundary layers. J. Fluid Mech. 108, 363382.CrossRefGoogle Scholar
Raupach, M. R. & Shaw, R. H. 1982 Averaging procedures for flow within vegetation canopies. Boundary-Layer Meteorol. 22 (1), 7990.CrossRefGoogle Scholar
Roche, K. R., Blois, G., Best, J. L., Christensen, K. T., Aubeneau, A. F. & Packman, A. I. 2018 Turbulence links momentum and solute exchange in coarse-grained streambeds. Water Resour. Res. 54 (5), 32253242.CrossRefGoogle Scholar
Rosti, M. E., Cortelezzi, L. & Quadrio, M. 2015 Direct numerical simulation of turbulent channel flow over porous walls. J. Fluid Mech. 784, 396442.CrossRefGoogle Scholar
Schlatter, P. & Örlü, R. 2010a Assessment of direct numerical simulation data of turbulent boundary layers. J. Fluid Mech. 659, 116126.CrossRefGoogle Scholar
Schlatter, P. & Örlü, R. 2010b Quantifying the interaction between large and small scales in wall-bounded turbulent flows: a note of caution. Phys. Fluids 22 (5), 051704.CrossRefGoogle Scholar
Squire, D. T., Baars, W. J., Hutchins, N. & Marusic, I. 2016 Inner-outer interactions in rough-wall turbulence. J. Turbul. 17 (12), 11591178.CrossRefGoogle Scholar
Sreenivasan, K. R. 1982 Laminarescent, relaminarizing and retransitional flows. Acta Mech. 44 (1–2), 148.CrossRefGoogle Scholar
Talluru, K. M., Baidya, R., Hutchins, N. & Marusic, I. 2014 Amplitude modulation of all three velocity components in turbulent boundary layers. J. Fluid Mech. 746, R1.CrossRefGoogle Scholar
Voermans, J. J., Ghisalberti, M. & Ivey, G. N. 2017 The variation of flow and turbulence across the sediment–water interface. J. Fluid Mech. 824, 413437.CrossRefGoogle Scholar
Volino, R. J., Schultz, M. P. & Flack, K. A. 2007 Turbulence structure in rough-and smooth-wall boundary layers. J. Fluid Mech. 592, 263293.CrossRefGoogle Scholar
Volino, R. J., Schultz, M. P. & Flack, K. A. 2011 Turbulence structure in boundary layers over periodic two- and three- dimensional roughness. J. Fluid Mech. 676, 172190.CrossRefGoogle Scholar
Wallace, J. M., Eckelmann, H. & Brodkey, R. S. 1972 The wall region in turbulent shear flow. J. Fluid Mech. 54 (1), 3948.CrossRefGoogle Scholar
Wilson, N. R. & Shaw, R. H. 1977 A higher order closure model for canopy flow. J. Appl. Meteorol. 16 (11), 11971205.2.0.CO;2>CrossRefGoogle Scholar
Wu, S., Christensen, K. T. & Pantano, C. 2019 Modelling smooth- and transitionally rough-wall turbulent channel flow by leveraging inner–outer interactions and principal component analysis. J. Fluid Mech. 863, 407453.CrossRefGoogle Scholar
Wu, Y. & Christensen, K. T. 2010 Spatial structure of a turbulent boundary layer with irregular surface roughness. J. Fluid Mech. 655, 380418.CrossRefGoogle Scholar
Zhang, C. & Chernyshenko, S. I. 2016 Quasisteady quasihomogeneous description of the scale interactions in near-wall turbulence. Phys. Rev. Fluids 1 (1), 014401.CrossRefGoogle Scholar