Hostname: page-component-6587cd75c8-r56mn Total loading time: 0 Render date: 2025-04-24T09:14:06.248Z Has data issue: false hasContentIssue false

Evolution of water wave packets by wind in shallow water

Published online by Cambridge University Press:  25 September 2024

Montri Maleewong*
Affiliation:
Department of Mathematics, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand
Roger Grimshaw
Affiliation:
Department of Mathematics, University College London, London WC1E 6BT, UK
*
Email address for correspondence: [email protected]

Abstract

We use the Korteweg–de Vries (KdV) equation, supplemented with several forcing/friction terms, to describe the evolution of wind-driven water wave packets in shallow water. The forcing/friction terms describe wind-wave growth due to critical level instability in the air, wave decay due to laminar friction in the water at the air–water interface, wave stress in the air near the interface induced by a turbulent wind and wave decay due to a turbulent bottom boundary layer. The outcome is a modified KdV–Burgers equation that can be a stable or unstable model depending on the forcing/friction parameters. To analyse the evolution of water wave packets, we adapt the Whitham modulation theory for a slowly varying periodic wave train with an emphasis on the solitary wave train limit. The main outcome is the predicted growth and decay rates due to the forcing/friction terms. Numerical simulations using a Fourier spectral method are performed to validate the theory for various cases of initial wave amplitudes and growth and/or decay parameter ranges. The results from the modulation theory agree well with these simulations. In most cases we examined, many solitary waves are generated, suggesting the formation of a soliton gas.

Type
JFM Papers
Copyright
© The Author(s), 2024. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Costa, A., Osborne, A.R., Resio, D.T., Alessio, S., Chriv, E., Saggese, E., Bellomo, K. & Long, C.E. 2014 Soliton turbulence in shallow water ocean surface waves. Phys. Rev. Lett. 113, 108501.CrossRefGoogle ScholarPubMed
Dutykh, D. 2009 Visco-potential free-surface flows and long wave modelling. Eur. J. Mech. (B/Fluids) 28, 430443.CrossRefGoogle Scholar
Dutykh, D. & Dias, F. 2007 a Dissipative Boussinesq equations. C. R. Méc. 335, 559583.CrossRefGoogle Scholar
Dutykh, D. & Dias, F. 2007 b Viscous potential free-surface flows in a fluid layer of finite depth. C. R. Acad. Sci. Paris I 345, 113118.CrossRefGoogle Scholar
El, G., Grimshaw, R. & Tiong, W. 2012 Transformation of a shoaling undular bore. J. Fluid Mech. 709, 371395.CrossRefGoogle Scholar
El, G.A. 2007 Korteweg-de Vries equation: solitons and undular bores. In Solitary Waves in Fluids, Advances in Fluid Mechanics (ed. R. Grimshaw), vol. 47, pp. 19–53. WIT Press.CrossRefGoogle Scholar
El, G.A. 2021 Soliton gas in integrable dispersive hydrodynamics. J. Stat. Mech. 2021, 114001.CrossRefGoogle Scholar
Grimshaw, R. 1979 Slowly varying solitary waves. i Korteweg-de Vries equation. Proc. R. Soc. 368A, 359375.Google Scholar
Grimshaw, R. 2007 Envelope solitary waves. In Solitary Waves in Fluids, Advances in Fluid Mechanics (ed. R. Grimshaw), vol. 47, pp. 159–179. WIT Press.CrossRefGoogle Scholar
Grimshaw, R. 2010 Transcritical flow past an obstacle. ANZIAM J. 52, 125.CrossRefGoogle Scholar
Grimshaw, R. 2018 Generation of wave groups. In IUTAM Symposium Wind Waves (ed. R. Grimshaw, J. Hunt & E. Johnson), IUTAM Procedia Series, vol. 26, pp. 92–101. Elsevier.CrossRefGoogle Scholar
Grimshaw, R. 2019 a Generation of wave groups by shear layer instability. Fluids 4, 39.CrossRefGoogle Scholar
Grimshaw, R. 2019 b Two-dimensional modulation instability of wind waves. J. Ocean Engng Marine Energy 5, 413417.CrossRefGoogle Scholar
Grimshaw, R., Hunt, J. & Johnson, E. 2018 IUTAM Symposium Wind Waves, 2017, IUTAM Procedia Series, vol. 26. Elsevier.CrossRefGoogle Scholar
Grimshaw, R. & Maleewong, M. 2013 Stability of steady gravity waves generated by a moving localised pressure disturbance in water of finite depth. Phys. Fluids 25, 076605.CrossRefGoogle Scholar
Grimshaw, R. & Maleewong, M. 2016 Stability of steady gravity waves generated by a moving localised pressure disturbance in water of finite depth. J. Fluid Mech. 809, 918940.CrossRefGoogle Scholar
Grimshaw, R. & Maleewong, M. 2019 Transcritical flow over obstacles and holes: forced Korteweg-de Vries framework. J. Fluid Mech. 881, 660678.CrossRefGoogle Scholar
Grimshaw, R. & Mitsudera, H. 1993 Slowly-varying solitary wave solutions of the perturbed Korteweg-de Vries equation revisited. Stud. Appl. Maths 90, 7586.CrossRefGoogle Scholar
Grimshaw, R. & Yuan, C. 2016 The propagation of internal undular bores over variable topography. Phys. D 333, 200207.CrossRefGoogle Scholar
Grimshaw, R. & Yuan, C. 2018 Internal undular bores in the coastal ocean. In The Ocean in Motion (ed. M. Velarde, R. Tarakanov & A. Marchenko), Oceanography Series, vol. 7, pp. 23–39. Springer.CrossRefGoogle Scholar
Grimshaw, R.H. & Smyth, N. 1986 Resonant flow of a stratified fluid over topography. J. Fluid Mech. 169, 429464.CrossRefGoogle Scholar
Gurevich, A. & PitaevskiI, L. 1974 Nonstationary structure of a collisionless shock wave. Sov. Phys. JETP 38, 291297.Google Scholar
Johnson, R.S. 1970 A non-linear equation incorporating damping and dispersion. J. Fluid Mech. 42, 4960.CrossRefGoogle Scholar
Kharif, C., Kraenkel, R.A., Manna, M.A. & Thomas, R. 2010 The modulational instability in deep water under the action of wind and dissipation. J. Fluid Mech. 664, 138149.CrossRefGoogle Scholar
Maleewong, M. & Grimshaw, R. 2022 a Amplification of wave groups in the forced nonlinear Schrödinger equation. Fluids 7, 233.CrossRefGoogle Scholar
Maleewong, M. & Grimshaw, R. 2022 b Evolution of water wave groups with wind action. J. Fluid Mech. 947, A35.CrossRefGoogle Scholar
Maleewong, M. & Grimshaw, R. 2024 Evolution of water wave groups in water of finite depth. J. Fluid Mech. 985, A2.CrossRefGoogle Scholar
Manna, M.A. & Latifi, A. 2023 Korteweg de Vries Burger equation with Jeffreys wind wave interaction: blow-up and breaking of soliton-like solutions in finite time. Fluids 8, 231244.CrossRefGoogle Scholar
Miles, J.W. 1957 On the generation of surface waves by shear flows. J. Fluid Mech. 3, 185204.CrossRefGoogle Scholar
Myint, S. & Grimshaw, R. 1995 The modulation of nonlinear periodic wavetrains by dissipative terms in the Korteweg-de Vries equation. Wave Motion 22, 215238.CrossRefGoogle Scholar
Osborne, A.R. 2010 Nonlinear Ocean Waves and the Inverse Scattering Transform. Elseveier.Google Scholar
Smyth, N.F. 1987 Modulation theory solution for resonant flow over topography. Proc. R. Soc. A 333, 199221.Google Scholar
Smyth, N.F. 1988 Dissipative effects on the resonant flow of a stratified fluid over topography. J. Fluid Mech. 192, 287312.CrossRefGoogle Scholar
Su, C.H. & Gardner, C.S. 1969 Korteweg-de Vries equation and generalizations. III. Derivation of the Korteweg-de Vries equation and and Burgers equation. J. Math. Phys. 10, 536539.CrossRefGoogle Scholar
Tang, Y.M. & Grimshaw, R. 1995 A modal analysis of the coastally trapped waves generated by tropical cyclones. J. Phys. Ocean 25, 15771598.2.0.CO;2>CrossRefGoogle Scholar
Tang, Y.M., Grimshaw, R., Sanderson, B. & Holland, G. 1996 A numerical study of storm surges and tides on the North Queensland coast. J. Phys. Ocean 26, 27002711.2.0.CO;2>CrossRefGoogle Scholar
Whitham, G.B. 1974 Linear and Nonlinear Waves. Wiley.Google Scholar
Zabusky, N.J. & Kruskal, M.D. 1965 Iiteraction of solitons in a collisionless plasma and the recurrence of initial states. Phys. Rev. Lett. 15, 240243.CrossRefGoogle Scholar
Zakharov, V. 2018 Analytic theory of a wind-driven sea. In IUTAM Symposium Wind Waves (ed. R. Grimshaw, J. Hunt & E. Johnson), IUTAM Procedia Series, vol. 26, pp. 43–58. Elsevier.CrossRefGoogle Scholar
Zakharov, V., Badulin, S., Hwang, P. & Caulliez, G. 2015 Universality of sea wave growth and its physical roots. J. Fluid Mech. 780, 503535.CrossRefGoogle Scholar
Zakharov, V., Resio, D. & Pushkarev, A. 2017 Balanced source terms for wave generation within the Hasselmann equation. Nonlinear Process. Geophys. 24, 581597.CrossRefGoogle Scholar
Zdyrski, T. & Feddersen, F. 2021 Wind-induced changes to surface gravity wave shape in shallow water. J. Fluid Mech. 903, A27.CrossRefGoogle Scholar