Hostname: page-component-f554764f5-rj9fg Total loading time: 0 Render date: 2025-04-19T05:53:15.906Z Has data issue: false hasContentIssue false

Evolution of two-phase structures during the entire sandstorm process

Published online by Cambridge University Press:  17 March 2025

Yanxiong Shi
Affiliation:
Center for Particle-laden Turbulence, Lanzhou University, Lanzhou 730000, PR China
Hongyou Liu*
Affiliation:
Center for Particle-laden Turbulence, Lanzhou University, Lanzhou 730000, PR China
Xiaojing Zheng
Affiliation:
Research Center for Applied Mechanics, Xidian University, Xi’an 710071, PR China
*
Corresponding author: Hongyou Liu, [email protected]

Abstract

The evolution of two-phase structures, turbulence/dust concentration structures, during an entire sandstorm process, including non-stationary flow, has been originally investigated in this study. Dust concentration structures are observed at different sandstorm stages, which are similar to the turbulence structures. These two-phase structures adhere to self-similarity in the steady stage but fail in the non-stationary stage. However, dust particle exhibits a better capability to follow eddies in flow, but the evolution of dust structures is not analogous to that of turbulence structures, exhibiting distinct trends. Dust particles, initiated from the ground, gradually form cluster structures in the rising stage. Their morphology exhibits a ridge-like evolutionary trend, reaching a peak in the steady stage. In contrast, turbulence structures are most persistent and oblique in the early stage but sequentially diminish in the subsequent steady and declining stages. The significant changes in shear due to sharply varying wind velocity and thermal stability are primarily responsible for these evolution differences.

Type
JFM Papers
Copyright
© The Author(s), 2025. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Adrian, R.J., Meinhart, C.D. & Tomkins, C.D. 2000 Vortex organization in the outer region of the turbulent boundary layer. J. Fluid Mech. 422, 154.CrossRefGoogle Scholar
Baars, W.J., Hutchins, N. & Marusic, I. 2017 Self-similarity of wall-attached turbulence in boundary layers. J. Fluid Mech. 823, R2.CrossRefGoogle Scholar
Baidya, R. et al. 2019 Simultaneous skin friction and velocity measurements in high Reynolds number pipe and boundary layer flows. J. Fluid Mech. 871, 377400.CrossRefGoogle Scholar
Baidya, R., Philip, J., Hutchins, N., Monty, J.P. & Marusic, I. 2017 Distance-from-the-wall scaling of turbulent motions in wall-bounded flows. Phys. Fluids 29 (2), 020712.CrossRefGoogle Scholar
Bailey, S.C. & Smits, A.J. 2010 Experimental investigation of the structure of large- and very-large-scale motions in turbulent pipe flow. J. Fluid Mech. 651, 339356.CrossRefGoogle Scholar
Baker, L., Frankel, A., Mani, A. & Coletti, F. 2017 Coherent clusters of inertial particles in homogeneous turbulence. J. Fluid Mech. 833, 364398.CrossRefGoogle Scholar
Balachandar, S. & Eaton, J.K. 2010 Turbulent dispersed multiphase flow. Annu. Rev. Fluid Mech. 42 (1), 111133.CrossRefGoogle Scholar
Balakumar, B.J. & Adrian, R.J. 2007 Large- and very-large-scale motions in channel and boundary-layer flows. Philos. Trans. R. Soc. A Math. Phys. Engng Sci. 365 (1852), 665681.CrossRefGoogle ScholarPubMed
Baltzer, J.R., Adrian, R.J. & Wu, X. 2013 Structural organization of large and very large scales in turbulent pipe flow simulation. J. Fluid Mech. 720, 236279.CrossRefGoogle Scholar
Barenblatt, G.I. & Golitsyn, G.S. 1974 Local structure of mature dust storms. J. Atmos. Sci. 31 (7), 19171933.2.0.CO;2>CrossRefGoogle Scholar
Behrooz, R.D., Kaveh, M., Parya, B., Panagiotis, G., Hamid, K., G, , Dimitris, G. & K 2022 Long-term (2012–2020) PM10 concentrations and increasing trends in the Sistan Basin: the role of levar wind and synoptic meteorology. Atmos. Pollut. Res. 13 (7), 101460.CrossRefGoogle Scholar
Bernardini, M., Pirozzoli, S. & Orlandi, P. 2013 The effect of large-scale turbulent structures on particle dispersion in wall-bounded flows. Intl J. Multiphase Flow 51, 5564.CrossRefGoogle Scholar
Brown, G.L. & Thomas, A.S.W. 1977 Large structure in a turbulent boundary layer. Phys. Fluids 20 (10), S243S252.CrossRefGoogle Scholar
Carper, M. & Porté-Agel, F. 2004 The role of coherent structures in subfilter-scale dissipation of turbulence measured in the atmospheric surface layer. J. Turbul. 500, N40.Google Scholar
Chauhan, K., Hutchins, N., Marusic, I. & Monty, J. 2010 Two-point correlation statistics in the atmospheric surface layer. In Proceedings of 17th Australasian Fluid Mech Conference Paper, Auckland, New Zealand.Google Scholar
Chauhan, K., Hutchins, N., Monty, J. & Marusic, I. 2013 Structure inclination angles in the convective atmospheric surface layer. Boundary-Layer Meteorol. 147 (1), 4150.CrossRefGoogle Scholar
Choobari, O.A., Zawar-Reza, P. & Sturman, A. 2012 Atmospheric forcing of the three-dimensional distribution of dust particles over Australia: a case study. J. Geophys. Res. Atmos. 117 (D11), D11206.Google Scholar
Christensen, K.T. & Adrian, R.J. 2001 Statistical evidence of hairpin vortex packets in wall turbulence. J. Fluid Mech. 431, 433443.CrossRefGoogle Scholar
Corrsin, S. & Kistler, A. 1955 Free-stream boundaries of turbulent flows, Report NACA-TR-1244. N.A.C.A. Technical Note.Google Scholar
Dennis, D.J.C. & Nickels, T.B. 2011 Experimental measurement of large-scale three-dimensional structures in a turbulent boundary layer. Part 1. Vortex packets. J. Fluid Mech. 673, 180217.CrossRefGoogle Scholar
Dragani, W.C. 1999 A feature model of surface pressure and wind fields associated with the passage of atmospheric cold fronts. Comput. Geosci. 25 (10), 11491157.CrossRefGoogle Scholar
Duan, Y.C., Zhang, P., Zhong, Q., Zhu, D.J. & Li, D.X. 2020 Characteristics of wall-attached motions in open channel flows. Phys. Fluids 32 (5), 055110.Google Scholar
Eaton, J.K. & Fessler, J.R. 1994 Preferential concentration of particles by turbulence. Intl J. Multiphase Flow 20, 169209.CrossRefGoogle Scholar
Fernholz, H.H. & Warnack, D. 1998 The effects of a favourable pressure gradient and of the Reynolds number on an incompressible axisymmetric turbulent boundary layer. Part 1. The turbulent boundary layer. J. Fluid Mech. 359, 329356.CrossRefGoogle Scholar
Foken, T., Göockede, M., Mauder, M., Mahrt, L., Amiro, B. & Munger, W. 2004 Post-Field Data Quality Control. Springer Netherlands.Google Scholar
Formenti, P., Caquineau, S., Desboeufs, K., Klaver, A., Chevaillier, S., Journet, E. & Rajot, J.L. 2014 Mapping the physico-chemical properties of mineral dust in western Africa: mineralogical composition. Atmos. Chem. Phys. 14 (19), 1066310686.CrossRefGoogle Scholar
Ganapathisubramani, B., Hutchins, N., Hambleton, W.T., Longmire, E.K. & Marusic, I. 2005 Investigation of large-scale coherence in a turbulent boundary layer using two-point correlations. J. Fluid Mech. 524, 5780.CrossRefGoogle Scholar
Ganapathisubramani, B., Longmire, E.K. & Marusic, I. 2006 Experimental investigation of vortex properties in a turbulent boundary layer. Phys. Fluids 18 (5), 055105.CrossRefGoogle Scholar
Ginoux, P., Chin, M., Tegen, I., Prospero, J.M., Holben, B., Dubovik, O. & Lin, S.-J. 2001 Sources and distributions of dust aerosols simulated with the GOCART model. J. Geophys. Res. Atmos. 106 (D17), 2025520273.CrossRefGoogle Scholar
Gui, K. et al. 2022 Record-breaking dust loading during two mega dust storm events over northern China in March 2021: aerosol optical and radiative properties and meteorological drivers. Atmos. Chem. Phys. 22 (12), 79057932.CrossRefGoogle Scholar
Hamzeh, N.H., Karami, S., Opp, C., Fattahi, E. & Jean-François, V. 2021 Spatial and temporal variability in dust storms in the Middle East, 2002–2018: three case studies in July 2009. Arab. J. Geosci. 14 (7), 32.CrossRefGoogle Scholar
He, X.B. & Liu, H.Y. 2023 The effect of turbulent motions on particle spatial distribution in high-Reynolds-number particle-laden flows. J. Fluid Mech. 976, A14.CrossRefGoogle Scholar
He, X.B., Liu, H.Y. & Zheng, X.J. 2024 Wall-attached structure characteristics of flow and dust concentration fields in high-Reynolds-number particle-laden flows. J. Fluid Mech. 986, A21.CrossRefGoogle Scholar
Heinold, B., Knippertz, P., Marsham, J.H., Fiedler, S., Dixon, N.S., Schepanski, K., Laurent, B. & Tegen, I. 2013 The role of deep convection and nocturnal low-level jets for dust emission in summertime West Africa: estimates from convection-permitting simulations. J. Geophys. Res. Atmos. 118 (10), 43854400.CrossRefGoogle ScholarPubMed
Helfer, K.C. & Nuijens, L. 2021 The morphology of simulated trade-wind convection and cold pools under wind shear. J. Geophys. Res. Atmos. 126 (20), e2021JD035148.CrossRefGoogle ScholarPubMed
Helmert, J., Heinold, B., Tegen, I., Hellmuth, O. & Wendisch, M. 2007 On the direct and semidirect effects of Saharan dust over Europe: A modeling study. J. Geophys. Res. Atmos. 112 (D13), D13208.CrossRefGoogle Scholar
Hommema, S.E. & Adrian, R.J. 2003 Packet structure of surface eddies in the atmospheric boundary layer. Boundary-Layer Meteorol. 106 (1), 147170.CrossRefGoogle Scholar
Hutchins, N., Chauhan, K., Marusic, I., Monty, J. & Klewicki, J. 2012 Towards reconciling the large-scale structure of turbulent boundary layers in the atmosphere and laboratory. Boundary-Layer Meteorol. 145 (2), 273306.CrossRefGoogle Scholar
Hutchins, N. & Marusic, I. 2007 Evidence of very long meandering features in the logarithmic region of turbulent boundary layers. J. Fluid Mech. 579, 128.CrossRefGoogle Scholar
Jacob, C. & Anderson, W. 2017 Conditionally averaged large-scale motions in the neutral atmospheric boundary layer: insights for aeolian processes. Boundary-Layer Meteorol. 162 (1), 2141.CrossRefGoogle Scholar
Jiménez, J. 2018 Coherent structures in wall-bounded turbulence. J. Fluid Mech. 842, P1.CrossRefGoogle Scholar
Kaftori, D., Hetsroni, G. & Banerjee, S. 1998 The effect of particles on wall turbulence. Intl J. Multiphase Flow 24 (3), 359386.CrossRefGoogle Scholar
Kaskaoutis, D.G., Francis, D., Rashki, A., Chaboureau, J.P. & Dumka, U.C. 2019 Atmospheric dynamics from synoptic to local scale during an intense frontal dust storm over the sistan basin in winter 2019. Geosciences 9 (10), 453.CrossRefGoogle Scholar
Kim, K.C. & Adrian, R.J. 1999 Very large-scale motion in the outer layer. Phys. Fluids 11 (2), 417422.CrossRefGoogle Scholar
Knippertz, P. 2014 Meteorological Aspects of Dust Storms. Springer Netherlands.CrossRefGoogle Scholar
Kovasznay, L.S., Kibens, V. & Blackwelder, R.F. 1970 Large-scale motion in the intermittent region of a turbulent boundary layer. J. Fluid Mech. 41 (2), 283325.CrossRefGoogle Scholar
Krogstad, P.Å. & Antonia, R.A. 1994 Structure of turbulent boundary layers on smooth and rough walls. J. Fluid Mech. 277, 121.CrossRefGoogle Scholar
Krug, D., Baars, W.J., Hutchins, N. & Marusic, I. 2019 Vertical coherence of turbulence in the atmospheric surface layer: connecting the hypotheses of Townsend and Davenport. Boundary-Layer Meteorol. 172 (2), 199214.CrossRefGoogle Scholar
Kunkel, G.J. & Marusic, I. 2006 Study of the near-wall-turbulent region of the high-Reynolds-number boundary layer using an atmospheric flow. J. Fluid Mech. 548, 375402.CrossRefGoogle Scholar
Lamo, D.Á., J., C. & Jiménez, J. 2009 Estimation of turbulent convection velocities and corrections to Taylor’s approximation. J. Fluid Mech. 640, 526.Google Scholar
Lawrence, C.R. & Neff, J.C. 2009 The contemporary physical and chemical flux of aeolian dust: a synthesis of direct measurements of dust deposition. Chem. Geol. 267 (1), 4663.CrossRefGoogle Scholar
Lee, J. & Lee, C. 2019 The effect of wall-normal gravity on particle-laden near-wall turbulence. J. Fluid Mech. 873, 475507.CrossRefGoogle Scholar
Lee, J.H. & Sung, H.J. 2011 Very-large-scale motions in a turbulent boundary layer. J. Fluid Mech. 673, 80120.CrossRefGoogle Scholar
Li, X., Hutchins, N., Zheng, X., Marusic, I. & Baars, W.J. 2022 Scale-dependent inclination angle of turbulent structures in stratified atmospheric surface layers. J. Fluid Mech. 942, A38.CrossRefGoogle Scholar
Lim, J.Y. & Chun, Y.S. 2006 The characteristics of Asian dust events in Northeast Asia during the springtime from 1993 to 2004. Glob. Planet. Change 52 (1), 231247.CrossRefGoogle Scholar
Lin, C.C. 1953 On Taylor’s hypothesis and the acceleration terms in the Navier–Stokes equation. Q. Appl. Maths 10 (4), 295306.CrossRefGoogle Scholar
Liu, H.Y., Bo, T.L. & Liang, Y.R. 2017 a The variation of large-scale structure inclination angles in high Reynolds number atmospheric surface layers. Phys. Fluids 29 (3), 035104.CrossRefGoogle Scholar
Liu, H.Y., Shi, Y.X. & Zheng, X.J. 2022 Evolution of turbulent kinetic energy during the entire sandstorm process. Atmos. Chem. Phys. 22 (13), 87878803.CrossRefGoogle Scholar
Liu, H.Y., Shi, Y.X. & Zheng, X.J. 2024 Scaling law of the second-order structure function over the entire sandstorm process. J. Fluid Mech. 978, A29.CrossRefGoogle Scholar
Liu, H.Y., Wang, G.H. & Zheng, X.J. 2017 b Spatial length scales of large-scale structures in atmospheric surface layers. Phys. Rev. Fluids 2 (6), 064606.CrossRefGoogle Scholar
Liu, H.Y. & Zheng, X.J. 2021 Large-scale structures of wall-bounded turbulence in single- and two-phase flows: advancing understanding of the atmospheric surface layer during sandstorms. Flow 1, E5.CrossRefGoogle Scholar
Liu, H.Y. & Zheng, X.J. 2024 Buoyancy effects on very-large-scale motions and amplitude modulation in convective atmospheric surface layers. Intl J. Heat Fluid Flow 106, 109327.CrossRefGoogle Scholar
Liu, Y., Jiang, X., Lee, C. & Hu, H. 2020 An experimental study on the spatiotemporal evolution of sand waves/ripples in turbulent boundary layer airflow. Phys. Fluids 32 (6), 063304.CrossRefGoogle Scholar
Lotfy, E.R. & Harun, Z. 2018 Effect of atmospheric boundary layer stability on the inclination angle of turbulence coherent structures. Environ. Fluid Mech. 18 (3), 637659.CrossRefGoogle Scholar
Lovett, C., Sowlat, M.H., Saliba, N.A., Shihadeh, A.L. & Sioutas, C. 2018 Oxidative potential of ambient particulate matter in Beirut during Saharan and Arabian dust events. Atmos. Environ. 188, 3442.CrossRefGoogle ScholarPubMed
Mahowald, N.M., Baker, A.R., Bergametti, G., Brooks, N., Duce, R.A., Jickells, T.D., Kubilay, N., Prospero, J.M. & Tegen, I. 2005 Atmospheric global dust cycle and iron inputs to the ocean. Glob. Biogeochem. Cycles 19 (4), GB4025.CrossRefGoogle Scholar
Marchioli, C. & Soldati, A. 2002 Mechanisms for particle transfer and segregation in a turbulent boundary layer. J. Fluid Mech. 468, 283315.CrossRefGoogle Scholar
Marusic, I. & Heuer, W.D.C. 2007 Reynolds number invariance of the structure inclination angle in wall turbulence. Phys. Rev. Lett. 99 (11), 114504.CrossRefGoogle ScholarPubMed
Marusic, I., McKeon, B.J., Monkewitz, P.A., Nagib, H.M., Smits, A.J. & Sreenivasan, K.R. 2010 Wall-bounded turbulent flows at high Reynolds numbers: recent advances and key issues. Phys. Fluids 22 (6), 065103.CrossRefGoogle Scholar
Marusic, I. & Monty, J.P. 2019 Attached eddy model of wall turbulence. Annu. Rev. Fluid Mech. 51 (1), 4974.CrossRefGoogle Scholar
Maxey, M.R. 1987 The gravitational settling of aerosol particles in homogeneous turbulence and random flow fields. J. Fluid Mech. 174, 441465.CrossRefGoogle Scholar
McLaughlin, J.B. 1989 Aerosol particle deposition in numerically simulated channel flow. Phys. Fluids A Fluid Dyn. 1 (7), 12111224.CrossRefGoogle Scholar
Miri, A., Maleki, S. & Middleton, N. 2021 An investigation into climatic and terrestrial drivers of dust storms in the Sistan region of Iran in the early twenty-first century. Sci. Total Environ. 757, 143952.CrossRefGoogle ScholarPubMed
Mockford, T., Bullard, J.E. & Thorsteinsson, T. 2018 The dynamic effects of sediment availability on the relationship between wind speed and dust concentration. Earth Surf. Process. Landf. 43 (11), 24842492.CrossRefGoogle Scholar
Monchaux, R., Bourgoin, M. & Cartellier, A. 2010 Preferential concentration of heavy particles: a Voronoï analysis. Phys. Fluids 22 (10), 103304.CrossRefGoogle Scholar
Monty, J.P., Stewart, J.A., Williams, R.C. & Chong, M.S. 2007 Large-scale features in turbulent pipe and channel flows. J. Fluid Mech. 589, 147156.CrossRefGoogle Scholar
Morris, S.C., Stolpa, S.R., Slaboch, P.E. & Klewicki, J.C. 2007 Near-surface particle image velocimetry measurements in a transitionally rough-wall atmospheric boundary layer. J. Fluid Mech. 580, 319338.CrossRefGoogle Scholar
Niu, Q.H., Qu, J.J., Zhang, K.C. & Liu, X.W. 2012 Thermodynamic effects on particle movement: wind tunnel simulation results. Chinese Geogr. Sci. 22 (2), 178187.CrossRefGoogle Scholar
Perry, A.E., Henbest, S. & Chong, M.S. 1986 A theoretical and experimental-study of wall turbulence. J. Fluid Mech. 165, 163199.CrossRefGoogle Scholar
Piomelli, U., Balaras, E. & Pascarelli, A. 2000 Turbulent structures in accelerating boundary layers. J. Turbul. 1, N1.CrossRefGoogle Scholar
Robinson, S.K. 1991 Coherent motions in the turbulent boundary layer. Annu. Rev. Fluid Mech. 23 (1), 601639.CrossRefGoogle Scholar
Salesky, S.T. & Anderson, W. 2018 Buoyancy effects on large-scale motions in convective atmospheric boundary layers: implications for modulation of near-wall processes. J. Fluid Mech. 856, 135168.CrossRefGoogle Scholar
Shao, Y.P., Klose, M. & Wyrwoll, K.-H. 2013 Recent global dust trend and connections to climate forcing. J. Geophys. Res. Atmos. 118 (19), 112.CrossRefGoogle Scholar
Talamelli, A., Fornaciari, N., Westin, J.K.A. & Alfredsson, P.H. 2002 Experimental investigation of streaky structures in a relaminarizing boundary layer. J. Turbul. 3 (1), N18.CrossRefGoogle Scholar
Talluru, K.M., Philip, J. & Chauhan, K.A. 2018 Local transport of passive scalar released from a point source in a turbulent boundary layer. J. Fluid Mech. 846, 292317.CrossRefGoogle Scholar
Tay, G.F., Kuhn, D.C. & Tachie, M.F. 2015 Effects of sedimenting particles on the turbulence structure in a horizontal channel flow. Phys. Fluids 27 (2), 025106.CrossRefGoogle Scholar
Townsend, A.A. 1976 The Structure of Turbulent Shear Flow. Cambridge University Press.Google Scholar
Tutkun, M., George, W.K., Delville, J., Stanislas, M., Johansson, P.B.V., Foucaut, J.M. & Coudert, S. 2009 Two-point correlations in high reynolds number flat plate turbulent boundary layers. J. Turbul. 10, N21.CrossRefGoogle Scholar
Vallikivi, M., Ganapathisubramani, B. & Smits, A.J. 2015 Spectral scaling in boundary layers and pipes at very high Reynolds numbers. J. Fluid Mech. 771, 303326.CrossRefGoogle Scholar
Volino, R.J., Schultz, M.P. & Flack, K.A. 2007 Turbulence structure in rough- and smooth-wall boundary layers. J. Fluid Mech. 592, 263293.CrossRefGoogle Scholar
Wang, G.H., Chen, W.B. & Zheng, X.J. 2024 Experimental study of the effect of particle-wall interactions on inertial particle dynamics in wall turbulence. J. Fluid Mech. 984, A4.CrossRefGoogle Scholar
Wang, G.H., Gu, H.H. & Zheng, X.J. 2020 Large scale structures of turbulent flows in the atmospheric surface layer with and without sand. Phys. Fluids 32 (10), 106604.CrossRefGoogle Scholar
Wang, G.H. & Zheng, X.J. 2016 Very large scale motions in the atmospheric surface layer: a field investigation. J. Fluid Mech. 802, 464489.CrossRefGoogle Scholar
Wang, P., Feng, S.J., Zheng, X.J. & Sung, H.J. 2019 The scale characteristics and formation mechanism of aeolian sand streamers based on large eddy simulation. J. Geophys. Res. Atmos. 124 (21), 1137211388.CrossRefGoogle Scholar
Wyngaard, J.C. 1992 Atmospheric-turbulence. Annu. Rev. Fluid Mech. 24 (1), 205233.CrossRefGoogle Scholar
Yang, K., Zhao, L. & Andersson, H.I. 2017 Preferential particle concentration in wall-bounded turbulence with zero skin friction. Phys. Fluids 29 (11), 113302.CrossRefGoogle Scholar
Zhang, H. & Zhou, Y.H. 2023 Unveiling the spectrum of electrohydrodynamic turbulence in dust storms. Nat. Commun. 14 (1), 408.CrossRefGoogle ScholarPubMed
Zhang, Y.Y., Hu, R.F. & Zheng, X.J. 2018 Large-scale coherent structures of suspended dust concentration in the neutral atmospheric surface layer: a large-eddy simulation study. Phys. Fluids 30 (4), 046601.CrossRefGoogle Scholar
Zhou, J., Adrian, R.J., Balachandar, S. & Kendall, T.M. 1999 Mechanisms for generating coherent packets of hairpin vortices in channel flow. J. Fluid Mech. 387, 353396.CrossRefGoogle Scholar
Zhu, H.Y., Pan, C., Wang, G.H., Liang, Y.R., Ji, X.C. & Wang, J.J. 2021 Attached eddy-like particle clustering in a turbulent boundary layer under net sedimentation conditions. J. Fluid Mech. 920, A53.CrossRefGoogle Scholar