Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-09T12:37:00.029Z Has data issue: false hasContentIssue false

Equilibration of weakly nonlinear salt fingers

Published online by Cambridge University Press:  22 February 2010

TIMOUR RADKO*
Affiliation:
Department of Oceanography, Naval Postgraduate School, Monterey, CA 93943, USA
*
Email address for correspondence: [email protected]

Abstract

An analytical model is developed to explain the equilibration mechanism of the salt finger instability in unbounded temperature and salinity gradients. The theory is based on the weakly nonlinear asymptotic expansion about the point of marginal instability. The proposed solutions attribute equilibration of salt fingers to a combination of two processes: (i) the triad interaction and (ii) spontaneous development of the mean vertical shear. The non-resonant triad interactions control the equilibration of linear growth for moderate and large values of Prandtl number (Pr) and for slightly unstable parameters. For small Pr and/or rigorous instabilities, the mean shear effects become essential. It is shown that, individually, neither the mean field nor the triad interaction models can accurately describe the equilibrium patterns of salt fingers in all regions of the parameter space. Therefore, we propose a new hybrid model, which represents both stabilizing effects in a single framework. The resulting solutions agree with the fully nonlinear numerical simulations over a wide range of governing parameters.

Type
Papers
Copyright
Copyright © Cambridge University Press 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Balmforth, N. J., Ghadge, S. A., Kettapun, A. & Mandre, S. D. 2006 Bounds on double-diffusive convection. J. Fluid Mech. 569, 2950.CrossRefGoogle Scholar
Charbonnel, C. & Zahn, J. 2007 Thermohaline mixing: a physical mechanism governing the photospheric composition of low-mass giants. Astron. Astrophys. 467, L29L32.CrossRefGoogle Scholar
Drazin, P. G. & Reid, W. H. 1981 Hydrodynamic Stability. Cambridge University Press, p. 527.Google Scholar
Guillot, T. 1999 Interiors of giant planets inside and outside the solar system. Science 286, 7277.CrossRefGoogle ScholarPubMed
Holyer, J. Y. 1984 The stability of long steady, two-dimensional salt fingers. J. Fluid Mech. 147, 169185.CrossRefGoogle Scholar
Howard, L. N. & Krishnamurti, R. 1986 Large scale flow in turbulent convection: a mathematical model. J. Fluid Mech. 170, 385419.CrossRefGoogle Scholar
Krishnamurti, R. 2003 Double-diffusive transport in laboratory thermohaline staircases. J. Fluid Mech. 483, 287314.CrossRefGoogle Scholar
Krishnamurti, R. & Howard, L. N. 1981 Large scale flow in turbulent convection. Proc. Natl Acad. Sci. USA 78, 19811985.CrossRefGoogle ScholarPubMed
Landau, L. D. 1944 On the problem of turbulence. Dokl. Akad. Nauk SSSR. 44, 311314.Google Scholar
Malkus, W. V. R. & Veronis, G. 1958 Finite amplitude cellular convection. J. Fluid Mech. 4, 225260.CrossRefGoogle Scholar
Merryfield, W. J. 1995 Hydrodynamics of semiconvection. Astrophys. J. 444, 318337.CrossRefGoogle Scholar
Merryfield, W. J. 2000 Origin of thermohaline staircases. J. Phys. Oceanogr. 30, 10461068.2.0.CO;2>CrossRefGoogle Scholar
Proctor, M. R. E. & Holyer, J. Y. 1986 Planform selection in salt fingers. J. Fluid Mech. 168, 241253.CrossRefGoogle Scholar
Radko, T. 2003 A mechanism for layer formation in a double-diffusive fluid. J. Fluid Mech. 497, 365380.CrossRefGoogle Scholar
Radko, T. 2005 What determines the thickness of layers in a thermohaline staircase? J. Fluid Mech. 523, 7998.CrossRefGoogle Scholar
Radko, T. 2008 The double-diffusive modon. J. Fluid Mech. 609, 5985.CrossRefGoogle Scholar
Radko, T. & Stern, M. E. 1999 Salt fingers in three dimensions. J. Mar. Res. 57, 471502.CrossRefGoogle Scholar
Radko, T. & Stern, M. E. 2000 Finite amplitude salt fingers in a vertically bounded layer. J. Fluid Mech. 425, 133160.CrossRefGoogle Scholar
Schmitt, R. W. 1979 The growth rate of supercritical salt fingers. Deep-Sea Res. 26A, 2344.CrossRefGoogle Scholar
Schmitt, R. 1983 The characteristics of salt fingers in a variety of fluid systems, including stellar interiors, liquid metals, oceans, and magmas. Phys. Fluids 26, 23732377.CrossRefGoogle Scholar
Stancliffe, R., Glebbeek, E., Izzard, R. & Pols, O. 2007 Carbon-enhanced metal-poor stars and thermohaline mixing. Astron. Astrophys. 464, L57L60.CrossRefGoogle Scholar
Stern, M. E. 1960 The “salt-fountain” and thermohaline convection. Tellus 12, 172175.CrossRefGoogle Scholar
Stern, M. E. & Radko, T. 1998 The salt finger amplitude in unbounded T-S gradient layers. J. Mar. Res. 56, 157196.CrossRefGoogle Scholar
Stern, M. E., Radko, T. & Simeonov, J. 2001 Three-dimensional salt fingers in an unbounded thermocline with application to the Central Ocean. J. Mar. Res. 59, 355390.CrossRefGoogle Scholar
Stern, M. E. & Simeonov, J. 2005 The secondary instability of salt fingers. J. Fluid Mech. 533, 361380.CrossRefGoogle Scholar
Tait, S. & Jaupart, C. 1989 Compositional convection in viscous melts. Nature 338, 571574.CrossRefGoogle Scholar
Vauclair, S. 2004 Metallic fingers and metallicity excess in exoplanets' host stars: the accretion hypothesis revisited. Astrophys. J. 605, 874879.CrossRefGoogle Scholar
Veronis, G. 1965 On finite amplitude instability in thermohaline convection. J. Mar. Res. 23, 117.Google Scholar