Hostname: page-component-669899f699-swprf Total loading time: 0 Render date: 2025-04-26T19:16:36.824Z Has data issue: false hasContentIssue false

Entrainment of the shear layer separated from a wall-mounted fence

Published online by Cambridge University Press:  07 November 2024

Sicheng Li
Affiliation:
Fluid Mechanics Key Laboratory of Education Ministry, Beihang University, Beijing 100191, PR China
Jinjun Wang*
Affiliation:
Fluid Mechanics Key Laboratory of Education Ministry, Beihang University, Beijing 100191, PR China
*
Email address for correspondence: [email protected]

Abstract

Turbulent entrainment at the turbulent/non-turbulent interface (TNTI) plays an important role in understanding the turbulent diffusion. While entrainment in fully developed canonical turbulent flows has been extensively studied, the evolution of entrainment in spatially developing flows remains poorly understood. In this work, characteristics of entrainment and the effect of vortices on entrainment of the shear layer separated from a wall-mounted fence are studied by the experiment in a water channel. The shedding vortex experiences a series of stages, including generation, growth, deformation and breakdown into smaller vortices. With the development of the flow, entrainment varies correspondingly. The prograde vortex near the TNTI is found to suppress entrainment but have little effect on the detrainment process, while the retrograde vortex promotes entrainment and suppresses detrainment as well. Consequently, the local entrainment velocity is decreased by the prograde vortex and increased more significantly by the retrograde vortex. Along the streamwise direction, the time-mean entrainment velocity is smallest where the prograde vortex is strongest in the vortex deformation stage. However, the largest time-mean entrainment velocity is located where the enstrophy gradient near the TNTI is greatest after reattachment, rather than where the retrograde vortex is strongest shortly after the breakdown of the shedding vortex, because the scarcity of retrograde vortices in the vicinity of the TNTI makes their long-time cumulative contribution not as significant as their local enhancement. The present study reveals how entrainment evolves in the separated and reattaching flow, and improves our understanding of the effect of vortices on entrainment.

Type
JFM Papers
Copyright
© The Author(s), 2024. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Agelinchaab, M. & Tachie, M.F. 2008 PIV study of separated and reattached open channel flow over surface mounted blocks. J. Fluid Engng 130 (6), 061206.CrossRefGoogle Scholar
Balamurugan, G., Rodda, A., Philip, J. & Mandal, A. 2020 Characteristics of the turbulent non-turbulent interface in a spatially evolving turbulent mixing layer. J. Fluid Mech. 894, A4.CrossRefGoogle Scholar
Bisset, D.K., Hunt, J.C.R. & Rogers, M.M. 2002 The turbulent/non-turbulent interface bounding a far wake. J. Fluid Mech. 451, 383410.CrossRefGoogle Scholar
Borrell, G. & Jiménez, J. 2016 Properties of the turbulent/non-turbulent interface in boundary layers. J. Fluid Mech. 801, 554596.CrossRefGoogle Scholar
Brown, G.L. & Roshko, A. 1974 On density effects and large structure in turbulent mixing layers. J. Fluid Mech. 64, (4) 775816.CrossRefGoogle Scholar
Buxton, O.R.H. 2015 Modulation of the velocity gradient tensor by concurrent large-scale velocity fluctuations in a turbulent mixing layer. J. Fluid Mech. 777, 112.CrossRefGoogle Scholar
Castro, I. & Haque, A. 1987 The structure of a turbulent shear layer bounding a separation region. J. Fluid Mech. 179, 439468.CrossRefGoogle Scholar
Champagnat, F., Plyer, A., Le Besnerais, G., Leclaire, B., Davoust, S. & Le Sant, Y. 2011 Fast and accurate PIV computation using highly parallel iterative correlation maximization. Exp. Fluids 50, 11691182.CrossRefGoogle Scholar
Chauhan, K., Philip, J. & Marusic, I. 2014 Scaling of the turbulent/non-turbulent interface in boundary layers. J. Fluid Mech. 751, 298328.CrossRefGoogle Scholar
Cheng, Y. & Chen, Q. 2021 Large eddy simulation and dynamic mode decomposition of turbulent mixing layers. Appl. Sci. 11 (24), 12127.CrossRefGoogle Scholar
Cimarelli, A. & Boga, G. 2021 Numerical experiments on turbulent entrainment and mixing of scalars. J. Fluid Mech. 927, A34.CrossRefGoogle Scholar
Corrsin, S. & Kistler, A.L. 1955 Free-stream boundaries of turbulent flows. NACA Tech. Rep. 3133.Google Scholar
Cui, G., Pan, C., Wu, D., Ye, Q. & Wang, J. 2019 Effect of drag reducing riblet surface on coherent structure in turbulent boundary layer. Chin. J. Aeronaut. 32 (11), 24332442.CrossRefGoogle Scholar
Fang, X. & Tachie, M.F. 2019 On the unsteady characteristics of turbulent separations over a forward-backward-facing step. J. Fluid Mech. 863, 9941030.CrossRefGoogle Scholar
Fang, X., Tachie, M.F. & Dow, K. 2022 Turbulent separations beneath semi-submerged bluff bodies with smooth and rough undersurfaces. J. Fluid Mech. 947, A19.CrossRefGoogle Scholar
Fiscaletti, D., Attili, A., Bisetti, F. & Elsinga, G.E. 2016 a Scale interactions in a mixing layer the role of the large-scale gradients. J. Fluid Mech. 791, 154173.CrossRefGoogle Scholar
Fiscaletti, D., Elsinga, G.E., Attili, A., Bisetti, F. & Buxton, O.R.H. 2016 b Scale dependence of the alignment between strain rate and rotation in turbulent shear flow. Phys. Rev. Fluids 1, 064405.CrossRefGoogle Scholar
Fraga, V.S., Yin, G. & Ong, M.C. 2022 Three-dimensional numerical simulations and proper orthogonal decomposition analysis of flow over different bottom-mounted ribs. Ships Offshore Struct. 17 (4), 792827.CrossRefGoogle Scholar
George, W.K. & Hussein, H.J. 1991 Locally axisymmetric turbulence. J. Fluid Mech. 233, 123.CrossRefGoogle Scholar
Gu, H., Yang, J. & Liu, M. 2017 Study on the instability in separating-reattaching flow over a surface-mounted rib. Intl J. Comput. Fluid Dyn. 31 (2), 109121.CrossRefGoogle Scholar
Hayashi, M., Watanabe, T. & Nagata, K. 2021 The relation between shearing motions and the turbulent/non-turbulent interface in a turbulent planar jet. Phys. Fluids 33, 055126.CrossRefGoogle Scholar
Hickey, J.-P., Hussain, F. & Wu, X. 2013 Role of coherent structures in multiple self-similar states of turbulent planar wakes. J. Fluid Mech. 731, 312363.CrossRefGoogle Scholar
Holzner, M. & Luthi, B. 2011 Laminar superlayer at the turbulence boundary. Phys. Rev. Lett. 106 (13), 134503.CrossRefGoogle ScholarPubMed
Hutchins, N., Hambleton, W.T. & Marusic, I. 2005 Inclined cross-stream stereo particle image velocimetry measurements in turbulent boundary layers. J. Fluid Mech. 541, 2154.CrossRefGoogle Scholar
Jahanbakhshi, R. 2021 Mechanisms of entrainment in a turbulent boundary layer. Phys. Fluids 33, 035105.CrossRefGoogle Scholar
Jahanbakhshi, R. & Madnia, C. 2016 Entrainment in a compressible turbulent shear layer. J. Fluid Mech. 797, 564603.CrossRefGoogle Scholar
Kang, N., Essel, E.E., Roussinova, V. & Balachandar, R. 2021 Effects of approach flow conditions on the unsteady three-dimensional wake structure of a square-back Ahmed body. Phys. Rev. Fluids 6 (3), 034613.CrossRefGoogle Scholar
Kankanwadi, K.S. & Buxton, O.R.H. 2020 Turbulent entrainment into a cylinder wake from a turbulent background. J. Fluid Mech. 905, A35.CrossRefGoogle Scholar
van der Kindere, J. & Ganapathisubramani, B. 2018 Effect of length of two-dimentional obstacles on characteristics of separation and reattachment. J. Wind Engng Ind. Aerodyn. 178, 3848.CrossRefGoogle Scholar
Lander, D.C., Letchford, C.W., Amitay, M. & Kopp, G.A. 2016 Influence of the bluff body shear layers on the wake of a square prism in a turbulent flow. Phys. Rev. Fluids 1, 044406.CrossRefGoogle Scholar
Li, S., Long, Y. & Wang, J. 2022 Turbulent/non-turbulent interface for laminar boundary flow over a wall-mounted fence. Phys. Fluids 34, 125113.CrossRefGoogle Scholar
Liu, C., Gao, Y.-s., Dong, X.-r., Wang, Y.-q., Liu, J.-m., Zhang, Y.-n., Cai, X.-s. & Gui, N. 2019 Third generation of vortex identification methods: Omega and Liutex/Rortex based systems. J. Hydrodyn. 31, 205223.CrossRefGoogle Scholar
Long, Y., Wang, J. & Pan, C. 2022 a Universal modulations of large-scale motions on entrainment of turbulent boundary layers. J. Fluid Mech. 941, A68.CrossRefGoogle Scholar
Long, Y., Wang, J. & Wang, J. 2022 b ‘Turbulent/non-turbulent interface’ in a low-Reynolds-number transitional boundary layer over a multi-element airfoil. Phys. Fluids 34, 102111.CrossRefGoogle Scholar
Martha, C.S., Blaisdell, G.A. & Lyrintzis, A.S. 2013 Large eddy simulations of 2-D and 3-D spatially developing mixing layers. Aerosp. Sci. Technol. 31 (1), 5972.CrossRefGoogle Scholar
Mathew, J. & Basu, A.J. 2002 Some characteristics of entrainment at a cylindrical turbulence boundary. Phys. Fluids 14, 20652072.CrossRefGoogle Scholar
Mistry, D., Philip, J. & Dawson, J. 2019 Kinematics of local entrainment and detrainment in a turbulent jet. J. Fluid Mech. 871, 896924.CrossRefGoogle Scholar
Mistry, D., Philip, J., Dawson, J.R. & Marusic, I. 2016 Entrainment at multi-scales across the turbulent/non-turbulent interface in an axisymmetric jet. J. Fluid Mech. 802, 690725.CrossRefGoogle Scholar
Mohammed-Taifour, A. & Weiss, J. 2016 Unsteadiness in a large turbulent separation bubble. J. Fluid Mech. 799, 383412.CrossRefGoogle Scholar
Moore, D.M., Letchford, C.W. & Amitay, M. 2019 Energetic scales in a bluff body shear layer. J. Fluid Mech. 875, 543575.CrossRefGoogle Scholar
Morlet, J. 1983 Sampling theory and wave propagation. In Issues in Acoustic Signal — Image Processing and Recognition (ed. C.H. Chen), pp. 233–261. Springer.CrossRefGoogle Scholar
Neamtu-Halic, M.M., Krug, D., Mollicone, J., van Reeuwijk, M., Haller, G. & Holzner, M. 2020 Connecting the time evolution of the turbulence interface to coherent structures. J. Fluid Mech. 898, A3.CrossRefGoogle Scholar
Nematollahi, A. & Tachie, M.F. 2018 Time-resolved PIV measurement of influence of upstream roughness on separated and reattached turbulent flows over a forward-facing step. AIP Adv. 8, 105110.CrossRefGoogle Scholar
Pan, C., Xue, D., Xu, Y., Wang, J. & Wei, R. 2015 Evaluating the accuracy performance of Lucas-Kanade algorithm in the circumstance of PIV application. Sci. China-Phys. Mech. Astron. 58, 104704.CrossRefGoogle Scholar
Philip, J., Bermejo-Moreno, I., Chung, D. & MARUSIC, I. 2015 Characteristics of the entrainment velocity in a developing wake. In International Symposium on Turbulence and Shear Flow Phenomena, TSFP-9, Melbourne, Australia, vol. 3.Google Scholar
Philip, J. & Marusic, I. 2012 Large-scale eddies and their role in entrainment in turbulent jets and wakes. Phys. Fluids 24 (5), 055108.CrossRefGoogle Scholar
Philip, J., Meneveau, C., de Silva, C.M. & Marusic, I. 2014 Multiscale analysis of fluxes at the turbulent/non-turbulent interface in high Reynolds number boundary layers. Phys. Fluids 26 (1), 015105.CrossRefGoogle Scholar
Qu, Y., Wang, J., Feng, L. & He, X. 2019 Effect of excitation frequency on flow characteristics around a square cylinder with a synthetic jet positioned at front surface. J. Fluid Mech. 880, 764798.CrossRefGoogle Scholar
Rajagopalan, S. & Antonia, R.A. 2005 Flow around a circular cylinder – structure of the near wake shear layer. Exp. Fluids 38, 393402.CrossRefGoogle Scholar
da Silva, C., Hunt, J.C.R., Eames, I. & Westerweel, J. 2014 a Interfacial layers between regions of different turbulence intensity. Annu. Rev. Fluid Mech. 46 (1), 567590.CrossRefGoogle Scholar
da Silva, C.B., Taveira, R.R. & Borrell, G. 2014 b Characteristics of the turbulent/nonturbulent interface in boundary layers, jets and shear-free turbulence. Journal of Physics: Conference Series 506 (1), 012015.Google Scholar
Silva, T.S., Zecchetto, M. & da Silva, C.B. 2018 The scaling of the turbulent/non-turbulent interface at high Reynolds numbers. J. Fluid Mech.J. Fluid Mech. 843, 156179.CrossRefGoogle Scholar
Taveira, R.R., Diogo, J.S., Lopes, D.C. & da Silva, C.B. 2013 Lagrangian statistics across the turbulent-nonturbulent interface in a turbulent plane jet. Phys. Rev. E 88, 043001.CrossRefGoogle Scholar
Watanabe, T., Jaulino, R., Taveira, R.R., da Silva, C.B., Nagata, K. & Sakai, Y. 2017 Role of an isolated eddy near the turbulent/non-turbulent interface layer. Phys. Rev. Fluids 2, 094607.CrossRefGoogle Scholar
Watanabe, T., Zhang, X. & Nagata, K. 2018 Turbulent/non-turbulent interfaces detected in DNS of incompressible turbulent boundary layers. Phys. Fluids 30 (3), 035102.CrossRefGoogle Scholar
Welch, P. 1967 The use of fast Fourier transform for the estimation of power spectra: a method based on time averaging over short, modified periodograms. IEEE Trans. Audio Electroacoust. 15 (2), 7073.CrossRefGoogle Scholar
Westerweel, J., Fukushima, C., Pedersen, J.M. & Hunt, J.C.R. 2005 Mechanics of the turbulent-nonturbulent interface of a jet. Phys. Rev. Lett. 95 (17), 174501.CrossRefGoogle ScholarPubMed
Westerweel, J., Fukushima, C., Pedersen, J.M. & Hunt, J.C.R. 2009 Momentum and scalar transport at the turbulent/non-turbulent interface of a jet. J. Fluid Mech. 631, 199230.CrossRefGoogle Scholar
White, F.M. 1991 Viscous Fluid Flow. Mcgraw-Hill.Google Scholar
Wolf, M., Lüthi, B., Holzner, M., Krug, D., Kinzelbach, W. & Tsinober, A. 2012 Investigations on the local entrainment velocity in a turbulent jet. Phys. Fluids 24 (10), 105110.CrossRefGoogle Scholar
Wolf, M., Lüthi, B., Holzner, M., Krug, D., Kinzelbach, W. & Tsinober, A. 2013 Erratum: ‘Investigations on the local entrainment velocity in a turbulent jet’ [Phys. Fluids 24, 105110 (2012)]. Phys. Fluids 25, 019901.CrossRefGoogle Scholar
Wu, D., Wang, J. & Pan, C. 2020 Bubbles and drops in the vicinity of turbulent/non-turbulent interface in turbulent boundary layer. Exp. Fluids 61, 240.CrossRefGoogle Scholar
Wu, X., Wallace, J.M. & Hickey, J.P. 2019 Boundary layer turbulence and freestream turbulence interface, turbulent spot and freestream turbulence interface, laminar boundary layer and freestream turbulence interface. Phys. Fluids 31, 045104.CrossRefGoogle Scholar
Wu, Y. & Christensen, K.T. 2006 Population trends of spanwise vortices in wall turbulence. J. Fluid Mech. 568, 5576.CrossRefGoogle Scholar
Xu, C., Long, Y. & Wang, J. 2023 Entrainment mechanism of turbulent synthetic jet flow. J. Fluid Mech. 958, A31.CrossRefGoogle Scholar
Zecchetto, M. & da Silva, C.B. 2021 Universality of small-scale motions within the turbulent/non-turbulent interface layer. J. Fluid Mech. 916, A9.CrossRefGoogle Scholar
Zhang, H., Rival, D.E. & Wu, X. 2021 Kinematics of the turbulent and nonturbulent interfaces in a subsonic airfoil flow. AIAA J. 59 (6), 21552168.CrossRefGoogle Scholar
Zhang, X., Watanabe, T. & Nagata, K. 2018 Turbulent/nonturbulent interfaces in high-resolution direct numerical simulation of temporally evolving compressible turbulent boundary layers. Phys. Rev. Fluids 3, 094605.CrossRefGoogle Scholar
Zhang, X., Watanabe, T. & Nagata, K. 2023 Reynolds number dependence of the turbulent/non-turbulent interface in temporally developing turbulent boundary layers. J. Fluid Mech. 964, A8.CrossRefGoogle Scholar
Zhou, J., Adrian, R.J., Balachandar, S. & Kendall, T.M. 1999 Mechanisms for generating coherent packets of hairpin vortices in channel flow. J. Fluid Mech. 387, 353396.CrossRefGoogle Scholar