Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-26T09:51:58.290Z Has data issue: false hasContentIssue false

Energy decay of vortices in viscous fluids: an applied mathematics view

Published online by Cambridge University Press:  20 August 2012

Jan Nordström*
Affiliation:
Department of Mathematics, Linköping University, SE-581 83 Linköping, Sweden
Björn Lönn
Affiliation:
Department of Information Technology, Uppsala University, SE-75105 Uppsala, Sweden
*
Email address for correspondence: [email protected]

Abstract

The energy decay of vortices in viscous fluids governed by the compressible Navier–Stokes equations is investigated. It is shown that the main reason for the slow decay is that zero eigenvalues exist in the matrix related to the dissipative terms. The theoretical analysis is purely mathematical and based on the energy method. To check the validity of the theoretical result in practice, numerical solutions to the Navier–Stokes equations are computed using a stable high-order finite difference method. The numerical computations corroborate the theoretical conclusion.

Type
Papers
Copyright
Copyright © Cambridge University Press 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Abarbanel, S. & Gottlieb, D. 1981 Optimal time splitting for two- and three-dimensional Navier–Stokes equations with mixed derivatives. J. Comput. Phys. 41 (1), 133.CrossRefGoogle Scholar
2. Anderson, J. D. 1991 Fundamentals of Aerodynamics, 2nd edn. McGraw-Hill.Google Scholar
3. Balmforth, N. J., Smith, S. G. L. & Young, W. R. 2001 Disturbing vortices. J. Fluid Mech. 426, 95133.CrossRefGoogle Scholar
4. Beggs, P. J., Selkirk, P. M. & Kingdom, D. L. 2004 Identification of von Kármán vortices in the surface winds of heard island. Boundary-Layer Meteorol. 113 (2), 287297.CrossRefGoogle Scholar
5. Breitsamter, C. 2011 Wake vortex characteristics of transport aircraft. Prog. Aerosp. Sci. 47 (2), 89134.CrossRefGoogle Scholar
6. Carpenter, M. H., Nordström, J. & Gottlieb, D. 1999 A stable and conservative interface treatment of arbitrary spatial accuracy. J. Comput. Phys. 148 (2), 341365.CrossRefGoogle Scholar
7. Chen, K. K., Colonius, T. & Taira, K. 2010 The leading-edge vortex and quasisteady vortex shedding on an accelerating plate. Phys. Fluids 22 (3), 111.CrossRefGoogle Scholar
8. Davoudzadeh, F., McDonald, H. & Thompson, B. E. 1995 Accuracy evaluation of unsteady CFD numerical schemes by vortex preservation. Comput. Fluid 24 (8), 883895.CrossRefGoogle Scholar
9. Erlebacher, G., Hussaini, M. Y. & Shu, C. W. 1997 Interaction of a shock with a longitudinal vortex. J. Fluid Mech. 337, 129153.CrossRefGoogle Scholar
10. Gerz, T. & Holzapfel, F. 1999 Wing-tip vortices, turbulence, and the distribution of emissions. AIAA J. 37 (10), 12701276.CrossRefGoogle Scholar
11. Gerz, T., Holzapfel, F. & Darracq, D. 2002 Commercial aircraft wake vortices. Prog. Aerosp. Sci. 38 (3), 181208.CrossRefGoogle Scholar
12. Greene, G. C. 1986 An approximate model for vortex decay in the atmosphere. J. Aircraft 23 (7), 566573.CrossRefGoogle Scholar
13. Gustafsson, B., Kreiss, H. O. & Oliger, J. 1995 Time Dependent Problems and Difference Methods. Academic.Google Scholar
14. Gustafsson, B. & Sundström, A. 1978 Incompletely parabolic problems in fluid-dynamics. SIAM J. Appl. Maths 35 (2), 343357.CrossRefGoogle Scholar
15. Gustavsson, L. H. 1991 Energy growth of 3-dimensional disturbances in plane Poiseuille flow. J. Fluid Mech. 224, 241260.CrossRefGoogle Scholar
16. Hagstrom, T. & Lorenz, J. 1995 All-time existence of smooth solutions to PDEs of mixed type and the invariant subspace of uniform states. Adv. Appl. Maths 16, 219257.CrossRefGoogle Scholar
17. Hagstrom, T. & Lorenz, J. 2002 On the stability of approximate solutions of hyperbolic–parabolic systems and the all-time existence of smooth, slightly compressible flows. Indiana Univ. Math. J. 51, 13391387.CrossRefGoogle Scholar
18. Hoff, D. & Zumbrum, K. 1995 Multidimensional diffusion waves for the Navier–Stokes equations of compressible flow. Indiana Univ. Math. J. 44 (2), 603676.CrossRefGoogle Scholar
19. Holland, W. R. 1978 The role of mesoscale eddies in the general circulation of the ocean – numerical experiments using a wind-driven quasi-geostrophic model. J. Phys. Oceanogr. 8, 363392.2.0.CO;2>CrossRefGoogle Scholar
20. Holzapfel, F., Hofbauer, T., Darracq, D., Moet, H., Garnier, F. & Gago, C. F. 2003 Analysis of wake vortex decay mechanisms in the atmosphere. Aerosp. Sci. Technol. 7 (4), 263275.CrossRefGoogle Scholar
21. Kantha, L. 2010 Decay of aircraft wake vortices under daytime free convective conditions. J. Aircraft 47 (6), 21592164.CrossRefGoogle Scholar
22. Kim, J.-H. & Kim, C. 2011 Computational investigation of 3-dimensional unsteady flow field characteristics around insects’ flapping flight. AIAA J. 49 (5), 953968.CrossRefGoogle Scholar
23. Koszalka, I., LaCasce, J. H., Andersson, M., Orvik, K. A. & Mauritzen, C. 2011 Surface circulation in the Nordic Seas from clustered drifters. Deep-Sea Res. Part I-Oceanographic Research Papers 58 (4), 468485.CrossRefGoogle Scholar
24. Kreiss, H. O. & Lorenz, J. 1989 Initial Boundary Value Problems and the Navier–Stokes Equations. John Wiley & Sons.Google Scholar
25. Kundu, P. & Cohen, I. 2001 Fluid Mechanics, 2nd edn. Elsevier Academic.Google Scholar
26. Liu, Y., Liu, N. & Lu, X. 2009 Numerical study of two-winged insect hovering flight. Adv. Appl. Maths Mech. 1 (4), 481509.CrossRefGoogle Scholar
27. Magnusson, M. & Smedman, A. 1999 Air flow behind wind turbines. J. Wind Engng Ind. Aerodyn. 80 (1–2), 169189.CrossRefGoogle Scholar
28. Matthaeus, W. H., Stribling, W. T., Martinez, D., Oughton, S. & Montgomery, D. 1991 Decaying, 2-dimensional, Navier–Stokes turbulence at very long times. Physica D 51 (1–3), 531538.CrossRefGoogle Scholar
29. Mattsson, K., Svärd, M. & Nordström, J. 2004 Stable and accurate artificial dissipation. J. Sci. Comput. 21 (1), 5779.CrossRefGoogle Scholar
30. McCormack, P. D. & Crane, L. 1973 Physical Fluid Dynamics. Academic.Google Scholar
31. Nordström, J. 1995 The use of characteristic boundary-conditions for the Navier–Stokes equations. Comput. Fluids 24 (5), 609623.CrossRefGoogle Scholar
32. Nordström, J. & Carpenter, M. H. 1999 Boundary and interface conditions for high-order finite-difference methods applied to the Euler and Navier–Stokes equations. J. Comput. Phys. 148, 621645.CrossRefGoogle Scholar
33. Nordström, J. & Carpenter, M. H. 2001 High-order finite difference methods, multidimensional linear problems, and curvilinear coordinates. J. Comput. Phys. 173 (1), 149174.CrossRefGoogle Scholar
34. Nordström, J., Gong, J., van der Weide, E. & Svärd, M. 2009 A stable and conservative high order multi-block method for the compressible Navier–Stokes equations. J. Comput. Phys. 228 (24), 90209035.CrossRefGoogle Scholar
35. Nordström, J. & Svärd, M. 2005 Well-posed boundary conditions for the Navier–Stokes equations. SIAM J. Numer. Anal. 43, 12311255.CrossRefGoogle Scholar
36. Ponta, F. L. 2010 Vortex decay in the Kármán eddy street. Phys. Fluids 22 (9).CrossRefGoogle Scholar
37. Proctor, F. H. 1998 The NASA–Langley wake vortex modelling effort in support of an operational aircraft spacing system, AIAA paper 98-0589. In 36th AIAA Aerospace Sciences Meeting and Exhibit.CrossRefGoogle Scholar
38. Pullin, D. I. & Saffman, P. G. 1998 Vortex dynamics in turbulence. Annu. Rev. Fluid Mech. 30, 3151.CrossRefGoogle Scholar
39. Rossow, V. J. 1999 Lift-generated vortex wakes of subsonic transport aircraft. Prog. Aerosp. Sci. 35 (6), 507660.CrossRefGoogle Scholar
40. Sarpkaya, T. 1998 Decay of wake vortices of large aircraft. AIAA J. 36 (9), 16711679.CrossRefGoogle Scholar
41. Spalart, P. R. 1998 Airplane trailing vortices. Annu. Rev. Fluid Mech. 30, 107138.CrossRefGoogle Scholar
42. Svärd, M., Carpenter, M. H. & Nordström, J. 2007 A stable high-order finite difference scheme for the compressible Navier–Stokes equations, far-field boundary conditions. J. Comput. Phys. 225 (1), 10201038.CrossRefGoogle Scholar
43. Svärd, M. & Nordström, J. 2008 A stable high-order finite difference scheme for the compressible Navier–Stokes equations. No-slip wall boundary conditions. J. Comput. Phys. 227 (10), 48054824.CrossRefGoogle Scholar
44. Wallin, S. & Girimaji, S. S. 2000 Evolution of an isolated turbulent trailing vortex. AIAA J. 38 (4), 657665.CrossRefGoogle Scholar
45. White, F. M. 1974 Viscous Fluid Flow. McGraw-Hill.Google Scholar
46. Winckelmans, G., Cocle, R., Dufresne, L., Capart, R., Bricteux, L., Daeninck, G., Lonfils, T., Duponcheel, M., Desenfas, O. & Georges, L. 2006 Direct numerical simulation and large-eddy simulation of wake vortices: going from laboratory conditions to flight conditions. In European Conference on Computational Fluid Dynamics, ECCOMAS CFD (ed. P. Wesseling, E. Onate & J. Periaux), 5–8 September at Egmond an Zee, The Netherlands.Google Scholar
47. Winter, B. & Bourqui, M. S. 2011 The impact of surface temperature variability on the climate change response in the northern hemisphere polar vortex. Geophys. Res. Lett. 38.CrossRefGoogle Scholar
48. Wu, T. Y. 2011 Fish swimming and bird/insect flight. Annu. Rev. Fluid Mech. 43, 2558.CrossRefGoogle Scholar
49. Yen, S.-C. 2011 Aerodynamic performance and shedding characteristics on a swept-back wing. J. Mar. Sci. Technol.-TAIWAN 19 (2), 162167.Google Scholar
50. Zhang, Y., Pedlosky, J. & Flierl, G. R. 2011 Shelf circulation and cross-shelf transport out of a bay driven by eddies from an open-ocean current. Part I. Interaction between a barotropic vortex and a steplike topography. J. Phys. Oceanogr. 41 (5), 889910.CrossRefGoogle Scholar
51. Zhou, J., Adrian, R. J., Balachandar, S. & Kendall, T. M. 1999 Mechanisms for generating coherent packets of hairpin vortices in channel flow. J. Fluid Mech. 387, 353396.CrossRefGoogle Scholar