Hostname: page-component-669899f699-vbsjw Total loading time: 0 Render date: 2025-04-24T12:34:16.527Z Has data issue: false hasContentIssue false

Effects of magnetic–vortical interactions on magnetic splitting

Published online by Cambridge University Press:  21 April 2025

Linlin Kang
Affiliation:
Hangzhou International Innovation Institute, Beihang University, Hangzhou, Zhejiang 311115, PR China Key Laboratory of Coastal Environment and Resources of Zhejiang Province, School of Engineering, Westlake University, Hangzhou, Zhejiang 310030, PR China
Yanru Wang
Affiliation:
Department of Engineering Mechanics, School of Aeronautics and Astronautics, Zhejiang University, Hangzhou, Zhejiang 310027, PR China
Zhongzheng Jiang
Affiliation:
Department of Engineering Mechanics, School of Aeronautics and Astronautics, Zhejiang University, Hangzhou, Zhejiang 310027, PR China
Jinhua Hao
Affiliation:
Kuaishou Technology, Beijing 100085, PR China
Shiying Xiong*
Affiliation:
Department of Engineering Mechanics, School of Aeronautics and Astronautics, Zhejiang University, Hangzhou, Zhejiang 310027, PR China
Dixia Fan
Affiliation:
Key Laboratory of Coastal Environment and Resources of Zhejiang Province, School of Engineering, Westlake University, Hangzhou, Zhejiang 310030, PR China
Weicheng Cui
Affiliation:
Key Laboratory of Coastal Environment and Resources of Zhejiang Province, School of Engineering, Westlake University, Hangzhou, Zhejiang 310030, PR China
*
Corresponding author: Shiying Xiong, [email protected]

Abstract

We propose an analytical approach based on the Frenet–Serret (FL) frame field, where an FL frame and the corresponding curvature and torsion are defined at each point along magnetic field lines, to investigate the evolution of magnetic tubes and their interaction with vortex tubes in magnetohydrodynamics. Within this framework, simplified expressions for the Lorentz force, its curl, the dynamics of flux tubes and helicity are derived. We further perform direct numerical simulations on the linkage between the magnetic and vortex tubes and investigate the effect of the initial angle $\theta$, ranging from $0^{\,\circ}$ to $45^{\,\circ}$, on their evolution. Our results show that magnetic tubes with non-zero curvature generate Lorentz forces, which in turn produce dipole vortices. These dipole vortices lead to the splitting of the magnetic tubes into smaller structures, releasing magnetic energy. Both magnetic and vortex tubes exhibit quasi-Lagrangian behaviour, maintaining similar shapes during initial evolution and consistent relative positions over time. A vortex tube with strength comparable to that of the magnetic tube, where the kinetic energy induced by the vortex tube is of the same order as the magnetic energy in the magnetic tube, can inhibit magnetic tube splitting by disrupting the formation of vortex dipoles. Additionally, minor variations in the angular configuration of the vortex tubes significantly influence their interaction with the magnetic field and the evolution of large-scale flow structures.

Type
JFM Papers
Copyright
© The Author(s), 2025. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Alfvén, H. 1943 On the existence of electromagnetic-hydromagnetic waves. Ark. Mat. Astron. Fys. 29, 17.Google Scholar
Aluie, H. 2009 Hydrodynamic and Magnetohydrodynamic Turbulence: Invariants, Cascades, and Locality. The Johns Hopkins University.Google Scholar
Angelopoulos, V., Artemyev, A., Phan, T.D. & Miyashita, Y. 2020 Near-earth magnetotail reconnection powers space storms. Nat. Phys. 16 (3), 317321.CrossRefGoogle Scholar
Bajer, K. & Moffatt, H.K. 1997 On the effect of a central vortex on a stretched magnetic flux tube. J. Fluid Mech. 339, 121142.Google Scholar
Beckers, J.M. & Schröter, E.H. 1968 The intensity, velocity and magnetic structure of a sunspot region. Solar Phys. 4 (2), 142164.CrossRefGoogle Scholar
Berciu, M., Rappoport, T.G. & Jankó, B. 2005 Manipulating spin and charge in magnetic semiconductors using superconducting vortices. Nature 435 (7038), 7175.CrossRefGoogle ScholarPubMed
Biskamp, D. 1994 Magnetic reconnection. Phys. Rep. 237 (4), 179247.Google Scholar
Bowers, C.F., Slavin, J.A., DiBraccio, G.A., Poh, G., Hara, T., Xu, S. & Brain, D.A. 2021 Maven survey of magnetic flux rope properties in the martian ionosphere: comparison with three types of formation mechanisms. Geophys. Res. Lett. 48 (10), e2021GL093296.CrossRefGoogle Scholar
Cassak, P.A., Shay, M.A. & Drake, J.F. 2005 Catastrophe model for fast magnetic reconnection onset. Phys. Rev. Lett. 95 (23), 235002.CrossRefGoogle ScholarPubMed
Chelpanov, A.A., Kobanov, N.I. & Kolobov, D.Y. 2015 Characteristics of oscillations in magnetic knots of solar faculae. Astron. Rep. 59 (10), 968973.CrossRefGoogle Scholar
Davidson, P.A. 2017 Introduction to Magnetohydrodynamics, Cambridge Texts in Applied Mathematics, vol. 55. Cambridge University Press.Google Scholar
Domínguez-Lozoya, J.C., Cuevas, S., Domínguez, D.R., Á. valos-Zú niga, R. & Ramos, E. 2021 Laboratory characterization of a liquid metal mhd generator for ocean wave energy conversion. Sustainability 13 (9), 4641.CrossRefGoogle Scholar
Dumin, Y.V. & Somov, B.V. 2019 Topological model of the anemone microflares in the solar chromosphere. Astron. Astrophys. 623, L4.CrossRefGoogle Scholar
Dumin, Y.V. & Somov, B.V. 2020 New types of the chromospheric anemone microflares: case study. Solar Phys. 295 (7), 110.CrossRefGoogle Scholar
Effenberg, F., Feng, Y., Schmitz, O., Frerichs, H., Bozhenkov, S.A., Hölbe, H., König, R., Krychowiak, M., Pedersen, T.S. & Reiter, D. 2017 Numerical investigation of plasma edge transport and limiter heat fluxes in Wendelstein 7-X startup plasmas with EMC3-EIRENE. Nucl. Fusion 57 (3), 036021.CrossRefGoogle Scholar
Egedal, J., Le, A. & Daughton, W. 2013 A review of pressure anisotropy caused by electron trapping in collisionless plasma, and its implications for magnetic reconnection. Phys. Plasmas 20 (6), 061201.CrossRefGoogle Scholar
Elsasser, W.M. 1950 The hydromagnetic equations. Phys. Rev. 79 (1), 183183.CrossRefGoogle Scholar
Fan, Y. 2008 The three-dimensional evolution of buoyant magnetic flux tubes in a model solar convective envelope. Astrophys. J. 676 (1), 680697.CrossRefGoogle Scholar
Freidberg, J.P., Mangiarotti, F.J. & Minervini, J. 2015 Designing a tokamak fusion reactor–how does plasma physics fit in? Phys. Plasmas 22 (7), 070901.CrossRefGoogle Scholar
Gibbon, J.D., Holm, D.D., Kerr, R.M. & Roulstone, I. 2006 Quaternions and particle dynamics in the Euler fluid equations. Nonlinearity 19 (8), 19691983.Google Scholar
Gonzalez, W.D., Joselyn, J.A., Kamide, Y., Kroehl, H.W., Rostoker, G., Tsurutani, B.T. & Vasyliunas, V.M. 1994 What is a geomagnetic storm? J. Geophys. Res. Space Phys. 99 (A4), 57715792.CrossRefGoogle Scholar
Goossens, M., Ruderman, M.S. & Hollweg, J.V. 1995 Dissipative MHD solutions for resonant Alfvén waves in 1-dimensional magnetic flux tubes. Solar Phys. 157 (1–2), 75102.Google Scholar
Hao, J., Xiong, S. & Yang, Y. 2019 Tracking vortex surfaces frozen in the virtual velocity in non-ideal flows. J. Fluid Mech. 863, 513544.CrossRefGoogle Scholar
Hao, J. & Yang, Y. 2021 Magnetic knot cascade via the stepwise reconnection of helical flux tubes. J. Fluid Mech. 912, A48.CrossRefGoogle Scholar
Hasimoto, H. 1959 Magnetohydrodynamic wave of finite amplitude at magnetic Prandtl number 1. Phys. Fluids 2 (5), 575576.CrossRefGoogle Scholar
Helmholtz, H. 1858 Über integrale der hydrodynamischen gleichungen, welche den wirbelbewegungen entsprechen. J. Reine Angew. Math. 55, 2555.Google Scholar
Hoelzl, M., Huijsmans, G.T.A., Pamela, S.J.P., Bécoulet, M., Nardon, E., Artola, F.J., Nkonga, B., Atanasiu, C.V., Bandaru, V. & Bhole, A. 2021 The JOREK non-linear extended MHD code and applications to large-scale instabilities and their control in magnetically confined fusion plasmas. Nucl. Fusion 61 (6), 065001.CrossRefGoogle Scholar
Inoue, S., Kusano, K., Büchner, J. & Skála, J. 2018 Formation and dynamics of a solar eruptive flux tube. Nat. Commun. 9 (1), 174.CrossRefGoogle ScholarPubMed
Ji, H., Daughton, W., Jara-Almonte, J., Le, A., Stanier, A. & Yoo, J. 2022 Magnetic reconnection in the era of exascale computing and multiscale experiments. Nat. Rev. Phys. 4 (4), 263282.CrossRefGoogle Scholar
Kivotides, D. 2018 Interactions between vortex tubes and magnetic-flux rings at high kinetic and magnetic Reynolds numbers. Phys. Rev. Fluids 3 (3), 033701.CrossRefGoogle Scholar
Kivotides, D. 2019 Interactions between vortex and magnetic rings at high kinetic and magnetic Reynolds numbers. Phys. Lett. A 383 (14), 16011606.CrossRefGoogle Scholar
Kulsrud, R.M. 1983 MHD description of plasma. In Handbook of Plasma Physics, vol. 1, pp. 115. North-Holland.Google Scholar
Lazarian, A. & Vishniac, E.T. 1999 Reconnection in a weakly stochastic field. Astrophys. J. 517 (2), 700718.CrossRefGoogle Scholar
Levchenko, I., Xu, S., Mazouffre, S., Lev, D., Pedrini, D., Goebel, D., Garrigues, L., Taccogna, F. & Bazaka, K. 2020 Perspectives, frontiers, and new horizons for plasma-based space electric propulsion. Phys. Plasmas 27 (2), 020601.CrossRefGoogle Scholar
Linton, M.G., Dahlburg, R.B. & Antiochos, S.K. 2001 Reconnection of twisted flux tubes as a function of contact angle. Astrophys. J. 553 (2), 905921.CrossRefGoogle Scholar
Lozitsky, V.G., Baranovsky, E.A., Lozitska, N.I. & Leiko, U.M. 2000 Observations of magnetic field evolution in a solar flare. Astron. Rep. 191, 171183.Google Scholar
Lundgren, T.S. 1982 Strained spiral vortex model for turbulent fine structure. Phys. Fluids 25 (12), 21932203.CrossRefGoogle Scholar
Lundgren, T.S. 1993 A small-scale turbulence model. Phys. Fluids A 5 (6), 14721483.CrossRefGoogle Scholar
MacTaggart, D., Prior, C., Raphaldini, B., Romano, P. & Guglielmino, S.L. 2021 Direct evidence that twisted flux tube emergence creates solar active regions. Nat. Commun. 12 (1), 6621.Google ScholarPubMed
Makwana, K.D. & Yan, H. 2020 Properties of magnetohydrodynamic modes in compressively driven plasma turbulence. Phys. Rev. X 10 (3), 031021.CrossRefGoogle Scholar
Manek, B. & Brummell, N. 2021 On the origin of solar hemispherical helicity rules: simulations of the rise of magnetic flux concentrations in a background field. Astrophys. J. 909 (1), 72.CrossRefGoogle Scholar
Mininni, P.D., Pouquet, A.G. & Montgomery, D.C. 2006 Small-scale structures in three-dimensional magnetohydrodynamic turbulence. Phys. Rev. Lett. 97 (24), 244503.CrossRefGoogle ScholarPubMed
Özdemir, Z. 2021 A geometrical and physical interpretation of quaternionic generalized magnetic flux tubes. Chaos, Solitons Fractals 143, 110541.CrossRefGoogle Scholar
Parker, E.N. 1978 The mutual attraction of magnetic knots. astrophys. Astrophys. J. 222, 357364.CrossRefGoogle Scholar
Porto, J., Elias, P.Q. & Ciardi, A. 2023 Anisotropic electron heating in an electron cyclotron resonance thruster with magnetic nozzle. Phys. Plasmas 30 (2), 023506.CrossRefGoogle Scholar
Priest, E. & Forbes, T. 2000 Magnetic Reconnection: MHD Theory and Applications. Cambridge University Press.CrossRefGoogle Scholar
Reed, D. 1995 Foundational electrodynamics and Beltrami vector fields. In Advanced Electromagnetism: Foundations, Theory and Applications, pp. 217249. World Scientific Publishing.CrossRefGoogle Scholar
Ren, Y., Yamada, M., Gerhardt, S., Ji, H., Kulsrud, R. & Kuritsyn, A. 2005 Experimental verification of the Hall effect during magnetic reconnection in a laboratory plasma. Phys. Rev. Lett. 95 (5), 055003.CrossRefGoogle Scholar
Ricca, R.L. 1997 Evolution and inflexional instability of twisted magnetic flux tubes. Solar Phys. 172 (1/2), 241248.CrossRefGoogle Scholar
Ricca, R.L. 2005 Inflexional disequilibrium of magnetic flux-tubes. Fluid Dyn. Res. 36 (4-6), 319332.CrossRefGoogle Scholar
Ricca, R.L. 2013 New energy and helicity bounds for knotted and braided magnetic fields. Geophys. Astrophys. Fluid Dyn. 107 (4), 385402.CrossRefGoogle Scholar
Ricca, R.L. & Maggioni, F. 2014 On the groundstate energy spectrum of magnetic knots and links. J. Phys. A Math. Theor. 47 (20), 205501.Google Scholar
Roberts, B. & Webb, A.R. 1978 Vertical motions in an intense magnetic flux tube. Solar Phys 56 (1), 535.CrossRefGoogle Scholar
Singh, N., Deverapalli, C. & Khazanov, G. 2006 Electrodynamics in a very thin current sheet leading to magnetic reconnection. Nonlinear Process. Geophys. 13 (5), 509523.CrossRefGoogle Scholar
Smiet, C.B., Candelaresi, S., Thompson, A., Swearngin, J., Dalhuisen, J.W. & Bouwmeester, D. 2015 Self-organizing knotted magnetic structures in plasma. Phys. Rev. Lett. 115 (9), 095001.CrossRefGoogle ScholarPubMed
Somov, B.V. & Kosugi, T. 1997 Collisionless reconnection and high-energy particle acceleration in solar flares. Astrophys. J. 485 (2), 859868.CrossRefGoogle Scholar
Spicer, D.S. 1982 Magnetic energy storage and conversion in the solar atmosphere. Space Sci. Rev. 31 (4), 351435.CrossRefGoogle Scholar
Spruit, H.C. & Roberts, B. 1983 Magnetic flux tubes on the sun. Nature 304 (5925), 401406.CrossRefGoogle Scholar
Stuikys, A. & Sykulski, J. 2018 Rapid multi-objective design optimisation of switched reluctance motors exploiting magnetic flux tubes. IET Sci. Meas. Technol. 12 (2), 223229.Google Scholar
Tang, J., Ding, X., Zhang, P., Lei, B., Zhao, Z. & Duan, Y. 2018 A highly efficient magnetically confined ion source for real time on-line monitoring of trace compounds in ambient air. Chem. Commun. 54 (92), 1296212965.CrossRefGoogle ScholarPubMed
Tao, R., Ren, H., Tong, Y. & Xiong, S. 2021 Construction and evolution of knotted vortex tubes in incompressible Schrödinger flow. Phys. Fluids 33 (7), 077112.CrossRefGoogle Scholar
Toriumi, S. & Hotta, H. 2019 Spontaneous generation of $ \delta$ -sunspots in convective magnetohydrodynamic simulation of magnetic flux emergence. Astrophys. J. Lett. 886, L21.CrossRefGoogle Scholar
Tziotziou, K., et al. 2023 Vortex motions in the solar atmosphere: definitions, theory, observations, and modelling. Space Sci. Rev. 219 (1), 1.CrossRefGoogle ScholarPubMed
Xiong, S., Wang, Z., Wang, M. & Zhu, B. 2022 A Clebsch method for free-surface vortical flow simulation. ACM Trans. Graph. 41 (4), 116–13.CrossRefGoogle Scholar
Xiong, S. & Yang, Y. 2019 a Construction of knotted vortex tubes with the writhe-dependent helicity. Phys. Fluids 31 (4), 047101.CrossRefGoogle Scholar
Xiong, S. & Yang, Y. 2019 b Identifying the tangle of vortex tubes in homogeneous isotropic turbulence. J. Fluid Mech. 874, 952978.CrossRefGoogle Scholar
Xiong, S. & Yang, Y. 2020 a Effects of twist on the evolution of knotted magnetic flux tubes. J. Fluid Mech. 895, A28.CrossRefGoogle Scholar
Xiong, S. & Yang, Y. 2020 b Evolution and helicity analysis of linked vortex tubes in viscous flows. Sci. Sin. Phys. Mech. Astron. 50 (4), 040005.Google Scholar
Yamada, M., Kulsrud, R. & Ji, H. 2010 Magnetic reconnection. Rev. Mod. Phys. 82 (1), 603664.CrossRefGoogle Scholar
Yang, S., Xiong, S., Zhang, Y., Feng, F., Liu, J. & Zhu, B. 2021 Clebsch gauge fluid. ACM Trans. Graph. 40, 99.CrossRefGoogle Scholar
Yin, L., Daughton, W., Karimabadi, H., Albright, B.J., Bowers, K.J. & Margulies, J. 2008 Three-dimensional dynamics of collisionless magnetic reconnection in large-scale pair plasmas. Phys. Rev. Lett. 101 (12), 125001.CrossRefGoogle ScholarPubMed
You, S., Yun, G.S. & Bellan, P.M. 2005 Dynamic and stagnating plasma flow leading to magnetic-flux-tube collimation. Phys. Rev. Lett. 95 (4), 045002.CrossRefGoogle ScholarPubMed
Yuan, Y., Spitkovsky, A., Blandford, R.D. & Wilkins, D.R. 2019 Black hole magnetosphere with small-scale flux tubes – II. Stability and dynamics. Mon. Not. R. Astron. Soc. 487 (3), 41144127.CrossRefGoogle Scholar
Zhao, X. & Scalo, C. 2021 Helicity dynamics in reconnection events of topologically complex vortex flows. J. Fluid Mech. 920, A30.CrossRefGoogle Scholar
Zhugzhda, Y.D. 2000 Nonlinear waves in thin magnetic flux tubes in astrophysical plasma. Phys. Scr. T84 (1), 159162.CrossRefGoogle Scholar
Zweibel, E.G. & Yamada, M. 2009 Magnetic reconnection in astrophysical and laboratory plasmas. Annu. Rev. Astron. Astrophys. 47 (1), 291332.CrossRefGoogle Scholar